Implementasi Algoritma Klasterisasi K-Medoids untuk Segmentasi Pengguna E-Ujian.Com

Anggyi Trisnawan Putra(1*),

(1) Universitas Negeri Semarang
(*) Corresponding Author

Abstract


User behaviour management and analysis is very important in business. A good marketing strategy needs to be done so that the loyalty of old users is maintained. This can be initiated by segmenting users so that a good marketing strategy can be formulated. Customer segmentation can be done with the help of one of the data mining methods,  which is clustering. In this study, k-medoids algorithm is used to cluster e-ujian.com users based on the behavioral data of each user. The first step will be analyzing data attributes that can be used. Next, the clustering process was carried out with the experimentally determined value of k. Finally, the cluster results will be evaluated using the Davies Bouldin Index (DBI) to determine the best number of clusters. The results showed that the value of k = 4 became the optimal number of clusters with a DBI value of 3,017.

Full Text:

PDF

References


D. Jenderal et al., “Pengaruh Service Quality Terhadap Loyalitas Dengan Kepuasan Pelanggan Sebagai Mediator Dalam Industri Farmasi B2b Di Sumatera Barat (Survey Pada Pelanggan Pt. Talang Gugun Sari Nusantara),” Jurnal Ilmiah Mahasiswa Ekonomi Manajemen TERAKREDITASI PERINGKAT, vol. 4, no. 3, pp. 589–601, 2020, [Online]. Available: http:jim.unsyiah.ac.id/ekm

M. A. A. Singaraj et al., “Service Quality And Its Dimensions Chief Editor Editor Editorial Advisors Service Quality And Its Dimensions A Kowsalya 2,” 2019. [Online]. Available: https://www.researchgate.net/publication/333058377

P. A. A. Pudjianingrum, C. S. Barkah, T. Herawaty, and L. Auliana, “Rumusan Program Membership, Poin Rewards dan Email Marketing untuk Meningkatkan Loyalitas Pelanggan: Studi pada Semanis Kamu Cafe,” Jurnal Administrasi Bisnis, vol. 11, no. 1, pp. 21–30, Mar. 2022, doi: 10.14710/jab.v11i1.39815.

A. E. Ezugwu et al., “A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects,” Engineering Applications of Artificial Intelligence, vol. 110. Elsevier Ltd, Apr. 01, 2022. doi: 10.1016/j.engappai.2022.104743.

T. Ayu Rospricilia, S. Ayu Ithriah, and A. Anjani Arifiyanti, “segmentasi pelanggan menggunakan metode k-means clustering berdasarkan model rfm pada cv tita jaya,” 2020.

S. Aprius, S. #1, A. I. #2, and E. Sediyono, “Metode K-Means Clustering dengan Atribut RFM untuk Mempertahankan Pelanggan,” vol. 4, p. 433, 2018, doi: 10.28932/jutisi.v4i3.878.

P. Prasetya, M. Najib, F. Mahliza, K. Kunci, P. Dua-level, and P. K-means, “Retailer Segmentation as A Strategy for B2B Marketing using A Two-Level Clustering Analysis,” Jun. 2022.

B. Lund and J. Ma, “A review of cluster analysis techniques and their uses in library and information science research: k-means and k-medoids clustering,” Performance Measurement and Metrics, vol. 22, no. 3, pp. 161–173, Nov. 2021, doi: 10.1108/PMM-05-2021-0026




DOI: http://dx.doi.org/10.30645/j-sakti.v6i2.528

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats