Penerapan Algoritma Backpropagation Dalam Memprediksi Jumlah Pengguna Kereta Api Di Pulau Sumatera

Vivi Auladina(1*), Jaya Tata Hardinata(2), M. Fauzan(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(2) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(*) Corresponding Author

Abstract


The purpose of this study is to analyze and test whether the number of train passengers in Indonesia can be predicted by using artificial intelligence techniques. In this study, the artificial intelligence technique used is the Artificial Neural Network Technique (ANN) with the Backpropagation method. Artificial neural network is a method that has been widely used to solve forecasting cases. The main difficulties in implementing neural network methods in forecasting are finding the right architectural combination, determining the appropriate learning rate parameter values and selecting the optimal training algorithm. The research data is secondary data sourced from the bps.go.id website from 2006 - 2019. The data in this study were computerized using the matlab application. From the 5 architectural models used, the best model based on computerized results with the Matlab application is 3-3-1 with an output value of 0.0215923 MSE. The accuracy of the truth obtained is 92%.

Full Text:

PDF

References


A. Wanto, A. P. Windarto, D. Hartama, And I. Parlina, “Use Of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” Int. J. Inf. Syst. Technol., Vol. 1, No. 1, Pp. 43–54, 2017.

A. Wanto And A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform. Sink., Vol. 2, No. 2, Pp. 37–43, 2017, [Online]. Available: Https://Zenodo.Org/Record/1009223#.Wd7norltbhq.

A. P. Windarto, “Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-Sakti (Jurnal Sains Komput. Dan Inform., Vol. 1, No. 1, Pp. 12–23, 2017.

T. Dalgleish Et Al., Jaringan Syaraf Tiruan (Neural Network), Vol. 136, No. 1. 2014.

Z. A. Matodang, “Jaringan Syaraf Tiruan Dengan Algoritma Backpropagtion Untuk Penentuan Kelulusan Sidang Skripsi,” Pelita Inform. Budi Darma, Vol. 4, No. 1, Pp. 84–93, 2013.

A. P. Windarto, L. S. Dewi, And D. Hartama, “Implementation Of Artificial Intelligence In Predicting The Value Of Indonesian Oil And Gas Exports With Bp Algorithm,” Int. J. Recent Trends Eng. Res., Vol. 3, No. 10, Pp. 1–12, 2017, Doi: 10.23883/Ijrter.2017.3482.J5bbs.

W. Budiharto And D. Suhartono, Artificial Intelligence Konsep Dan Penerapannya, Andi Yogya. Yogyakarta, 2014.

Y. A. Lesnussa, S. Latuconsina, And E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation Untuk Memprediksi Prestasi Siswa Sma ( Studi Kasus : Prediksi Prestasi Siswa Sman 4 Ambon ),” Vol. 11, No. 2, Pp. 149–160, 2015.

N. M. Sukarno, P. W. Wirawan, And S. Adhy, “Perancangan Dan Implementasi Jaringan Saraf Tiruan,” Vol. 5, Pp. 9–18, 2013.




DOI: https://doi.org/10.30645/kesatria.v2i1.58

DOI (PDF): https://doi.org/10.30645/kesatria.v2i1.58.g58

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: