Klasifikasi Kualitas Produk Mesin Pertanian Berdasarkan Evaluasi Kinerja Algoritma Random Forest

Irma Hakim(1*), Asdi Asdi(2), Mhd. Dicky Syahputra Lubis(3), Mely Novasari Harahap(4), Lokot Ridwan Batu Bara(5),

(1) Universitas Muhammadiyah Makassar, Makassar, Indonesia
(2) Universitas Muhammadiyah Makassar, Makassar, Indonesia
(3) Universitas Tjut Nyak Dhien, Medan, Indonesia
(4) STAI UISU Pematangsiantar, Pematangsiantar, Indonesia
(5) Universitas Asahan, Kisaran, Indonesia
(*) Corresponding Author

Abstract


This study aims to classify product quality in the agricultural industry using the Random Forest algorithm. The data used includes various inspection result parameters, such as dimensions, weight, product color, quality status, defect image, inspection time, temperature, machine speed, and indicator lights. The model is developed to classify products into "good" and "defective" categories, and is evaluated based on accuracy metrics and confusion matrix analysis. The results show that the Random Forest model is able to achieve an accuracy of 85% in classifying product quality. Based on the confusion matrix, the model has a perfect prediction rate for good quality products (100% precision) and several misclassifications in the defect category. Feature importance analysis shows that the parameters of inspection time, machine temperature, and defect image are the most significant factors in determining product quality. This study proves that the Random Forest algorithm can be a reliable tool to support the product quality inspection process in the agricultural industry, with further integration into IoT-based systems, this approach can improve the efficiency of the inspection process, reduce manual errors, and ensure more consistent product quality standards.

Full Text:

PDF

References


Y. Jararweh, S. Fatima, M. Jarrah, and S. AlZu’bi, ‘Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions’, Computers and Electrical Engineering, vol. 110, no. September, p. 108799, 2023, doi: 10.1016/j.compeleceng.2023.108799.

P. C. Pandey and M. Pandey, ‘Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals’, Sustainable Development, vol. 31, no. 5, pp. 3175–3195, 2023, doi: 10.1002/sd.2600.

Michael Alurame Eruaga, ‘Policy strategies for managing food safety risks associated with climate change and agriculture’, International Journal of Scholarly Research and Reviews, vol. 4, no. 1, pp. 21–32, 2024, doi: 10.56781/ijsrr.2024.4.1.0026.

I. Hakim, A. Asdi, and T. Afriliansyah, ‘Implementasi Algoritma Komputasi Linear Regression untuk Optimasi Prediksi Hasil Pertanian’, KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 5, no. 3, pp. 1423–1434, 2024, doi: 10.30645/kesatria.v5i3.460.

A. O. Hidayat, I. W. Ayu, and M. Wildan, ‘Kajian Literatur: Dampak Kebijakan Pemerintah Dalam Bidang Pertanian Untuk Kesejahteraan Ekonomi Petani’, Jurnal Riset Kajian Teknologi dan Lingkungan, vol. 7, no. 1, pp. 241–245, 2024, doi: 10.58406/jrktl.v7i1.1693.

A. Ghosh, A. Kumar, and G. Biswas, ‘Chapter 1 - Exponential population growth and global food security: challenges and alternatives’, in Bioremediation of Emerging Contaminants from Soils, Prasann Kumar, A. L. Srivastav, V. Chaudhary, E. D. van Hullebusch, and R. Busquets, Eds., 2024, pp. 1–20. doi: 10.1016/B978-0-443-13993-2.00001-3.

D. K. Pandey and R. Mishra, ‘Towards sustainable agriculture: Harnessing AI for global food security’, Artificial Intelligence in Agriculture, vol. 12, no. June, pp. 72–84, 2024, doi: 10.1016/j.aiia.2024.04.003.

A. A. Chandio, Y. Jiang, A. Amin, M. Ahmad, W. Akram, and F. Ahmad, ‘Climate change and food security of South Asia: fresh evidence from a policy perspective using novel empirical analysis’, Journal of Environmental Planning and Management, vol. 66, no. 1, pp. 169–190, 2023, doi: 10.1080/09640568.2021.1980378.

J. Saputri Mendrofa, M. W. Zendrato, N. Halawa, E. E. Zalukhu, and N. K. Lase, ‘Peran Teknologi dalam Meningkatkan Efisiensi Pertanian’, Tumbuhan: Publikasi Ilmu Sosiologi Pertanian Dan Ilmu Kehutanan, vol. 1, no. 3, pp. 01–12, 2024, doi: 10.62951/tumbuhan.v1i3.111.

K. Ruslan, ‘Produktivitas Tanaman Pangan dan Hortikultura. Makalah Kebijakan No. 37’, Center for Indonesian Policy Studies, no. 37, pp. 1–48, 2021. [Online]. Available: www.cips-indonesia.org

H. C. Mayana, M. Mulyadi, N. Nofriadi, D. F. Z, and E. K. Putri, ‘Rancang Bangun Mesin Penepung Pakan Ternak Multifungsi Untuk Kelompok Tani Berkah Mandiri’, Jurnal Teknik Mesin, vol. 17, no. 2, pp. 209–215, 2024, doi: 10.30630/jtm.17.2.1653.

H. Mirzadeh and H. Omranpour, ‘Extended Random Forest for multivariate air quality forecasting’, International Journal of Machine Learning and Cybernetics, 2024, doi: 10.1007/s13042-024-02329-7.

M. Al-Imran et al., ‘Evaluating Machine Learning Algorithms For Breast Cancer Detection: A Study On Accuracy And Predictive Performance’, The American Journal of Engineering and Technology, vol. 6, no. 9, pp. 22–33, 2024, doi: 10.37547/tajet/Volume06Issue09-04.

J. Fisher, S. Allen, G. Yetman, and L. Pistolesi, ‘Assessing the influence of landscape conservation and protected areas on social wellbeing using Random Forest machine learning’, Scientific Reports, vol. 14, no. 1, pp. 1–16, 2024, doi: 10.1038/s41598-024-61924-4.

I. Maulita, C. R. A. Widiawati, and A. M. Wahid, ‘Analisis Komparatif Linear Regression, Random Forest, dan Gradient Boosting untuk Prediksi Banjir’, Jurnal Pendidikan Dan Teknologi Indonesia, vol. 4, no. 8, pp. 369–379, 2024, doi: 10.52436/1.jpti.599.

S. Sobari, A. I. Purnamasari, A. Bahtiar, and K. Kaslani, ‘Meningkatkan Model Prediksi Kelulusan Santri Tahfidz di Pondok Pesantren Al-Kautsar Menggunakan Algoritma Random Forest’, JITET (Jurnal Informatika dan Teknik Elektro Terapan), vol. 13, no. 1, pp. 732–738, 2025, doi: 10.23960/jitet.v13i1.5704.

N. Pratama, E. Setyati, J. Santoso, and A. P. Rini, ‘Random Forest Classifier Dengan Grid Search Untuk Klasifikasi Hasil Psikotes Pada Rekrutmen Dosen dan Tenaga Kependidikan’, Konvergensi, vol. 20, no. 1, pp. 18–24, 2024, doi: 10.30996/konv.v20i1.10874.

Z. Zhou, C. Qiu, and Y. Zhang, ‘A comparative analysis of linear regression, neural networks and Random Forest regression for predicting air ozone employing soft sensor models’, Scientific Reports, vol. 13, no. 1, pp. 1–23, 2023, doi: 10.1038/s41598-023-49899-0.

N. Nur, F. Wajidi, S. Sulfayanti, and W. Wildayani, ‘Implementasi Algoritma Random Forest Regression untuk Memprediksi Hasil Panen Padi di Desa Minanga’, Jurnal Komputer Terapan, vol. 9, no. 1, pp. 58–64, 2023, doi: 10.35143/jkt.v9i1.5917.

A. R. Masdian, N. Bashit, and F. Hadi, ‘Analisis Produktivitas Padi Menggunakan Algoritma Machine Learning Random Forest Di Kabupaten Batang Tahun 2018 - 2022’, Elipsoida : Jurnal Geodesi dan Geomatika, vol. 6, no. 1, pp. 43–51, 2023, doi: 10.14710/elipsoida.2023.19023.

R. Firdaus et al., ‘Implementasi Algoritma Random Forest Untuk Klasifikasi Pencemaran Udara di Wilayah Jakarta Berdasarkan Jakarta Open Data’, Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer), vol. 14, no. 2, pp. 520–525, 2024, doi: 10.37859/jf.v14i2.7669.

M. Zahara, A. Putra, F. Candra, and E. Prakasa, ‘Klasifikasi Kualitas Varietas Benih Jagung Bima 20 Menggunakan Metode Random Forest’, Jurnal Teknlogi Informatika dan Komputer, vol. 10, no. 2, pp. 367–385, 2024, doi: 10.37012/jtik.v10i2.2177.

A. Setiawan, Z. H. Nst, Z. Khairi, and L. Efrizoni, ‘Klasifikasi Tingkat Risiko Diabetes Menggunakan Algoritma Random Forest’, JIRE (Jurnal Informatika & Rekayasa Elektronika), vol. 7, no. 2, pp. 263–271, 2024, doi: 10.36595/jire.v7i2.1259.

Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, ‘An improved Random Forest based on the classification accuracy and correlation measurement of decision trees’, Expert Systems with Applications, vol. 237, no. Part B, p. 121549, 2024, doi: 10.1016/j.eswa.2023.121549.

S. Das, M. S. Imtiaz, N. H. Neom, N. Siddique, and H. Wang, ‘A hybrid approach for Bangla sign language recognition using deep transfer learning model with Random Forest classifier’, Expert Systems with Applications, vol. 213, no. Part B, p. 118914, 2023, doi: 10.1016/j.eswa.2022.118914.




DOI: https://doi.org/10.30645/kesatria.v6i1.577

DOI (PDF): https://doi.org/10.30645/kesatria.v6i1.577.g572

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: