Klasifikasi Kualitas Produk Mesin Pertanian Berdasarkan Evaluasi Kinerja Algoritma Random Forest
(1) Universitas Muhammadiyah Makassar, Makassar, Indonesia
(2) Universitas Muhammadiyah Makassar, Makassar, Indonesia
(3) Universitas Tjut Nyak Dhien, Medan, Indonesia
(4) STAI UISU Pematangsiantar, Pematangsiantar, Indonesia
(5) Universitas Asahan, Kisaran, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Y. Jararweh, S. Fatima, M. Jarrah, and S. AlZu’bi, ‘Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions’, Computers and Electrical Engineering, vol. 110, no. September, p. 108799, 2023, doi: 10.1016/j.compeleceng.2023.108799.
P. C. Pandey and M. Pandey, ‘Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals’, Sustainable Development, vol. 31, no. 5, pp. 3175–3195, 2023, doi: 10.1002/sd.2600.
Michael Alurame Eruaga, ‘Policy strategies for managing food safety risks associated with climate change and agriculture’, International Journal of Scholarly Research and Reviews, vol. 4, no. 1, pp. 21–32, 2024, doi: 10.56781/ijsrr.2024.4.1.0026.
I. Hakim, A. Asdi, and T. Afriliansyah, ‘Implementasi Algoritma Komputasi Linear Regression untuk Optimasi Prediksi Hasil Pertanian’, KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 5, no. 3, pp. 1423–1434, 2024, doi: 10.30645/kesatria.v5i3.460.
A. O. Hidayat, I. W. Ayu, and M. Wildan, ‘Kajian Literatur: Dampak Kebijakan Pemerintah Dalam Bidang Pertanian Untuk Kesejahteraan Ekonomi Petani’, Jurnal Riset Kajian Teknologi dan Lingkungan, vol. 7, no. 1, pp. 241–245, 2024, doi: 10.58406/jrktl.v7i1.1693.
A. Ghosh, A. Kumar, and G. Biswas, ‘Chapter 1 - Exponential population growth and global food security: challenges and alternatives’, in Bioremediation of Emerging Contaminants from Soils, Prasann Kumar, A. L. Srivastav, V. Chaudhary, E. D. van Hullebusch, and R. Busquets, Eds., 2024, pp. 1–20. doi: 10.1016/B978-0-443-13993-2.00001-3.
D. K. Pandey and R. Mishra, ‘Towards sustainable agriculture: Harnessing AI for global food security’, Artificial Intelligence in Agriculture, vol. 12, no. June, pp. 72–84, 2024, doi: 10.1016/j.aiia.2024.04.003.
A. A. Chandio, Y. Jiang, A. Amin, M. Ahmad, W. Akram, and F. Ahmad, ‘Climate change and food security of South Asia: fresh evidence from a policy perspective using novel empirical analysis’, Journal of Environmental Planning and Management, vol. 66, no. 1, pp. 169–190, 2023, doi: 10.1080/09640568.2021.1980378.
J. Saputri Mendrofa, M. W. Zendrato, N. Halawa, E. E. Zalukhu, and N. K. Lase, ‘Peran Teknologi dalam Meningkatkan Efisiensi Pertanian’, Tumbuhan: Publikasi Ilmu Sosiologi Pertanian Dan Ilmu Kehutanan, vol. 1, no. 3, pp. 01–12, 2024, doi: 10.62951/tumbuhan.v1i3.111.
K. Ruslan, ‘Produktivitas Tanaman Pangan dan Hortikultura. Makalah Kebijakan No. 37’, Center for Indonesian Policy Studies, no. 37, pp. 1–48, 2021. [Online]. Available: www.cips-indonesia.org
H. C. Mayana, M. Mulyadi, N. Nofriadi, D. F. Z, and E. K. Putri, ‘Rancang Bangun Mesin Penepung Pakan Ternak Multifungsi Untuk Kelompok Tani Berkah Mandiri’, Jurnal Teknik Mesin, vol. 17, no. 2, pp. 209–215, 2024, doi: 10.30630/jtm.17.2.1653.
H. Mirzadeh and H. Omranpour, ‘Extended Random Forest for multivariate air quality forecasting’, International Journal of Machine Learning and Cybernetics, 2024, doi: 10.1007/s13042-024-02329-7.
M. Al-Imran et al., ‘Evaluating Machine Learning Algorithms For Breast Cancer Detection: A Study On Accuracy And Predictive Performance’, The American Journal of Engineering and Technology, vol. 6, no. 9, pp. 22–33, 2024, doi: 10.37547/tajet/Volume06Issue09-04.
J. Fisher, S. Allen, G. Yetman, and L. Pistolesi, ‘Assessing the influence of landscape conservation and protected areas on social wellbeing using Random Forest machine learning’, Scientific Reports, vol. 14, no. 1, pp. 1–16, 2024, doi: 10.1038/s41598-024-61924-4.
I. Maulita, C. R. A. Widiawati, and A. M. Wahid, ‘Analisis Komparatif Linear Regression, Random Forest, dan Gradient Boosting untuk Prediksi Banjir’, Jurnal Pendidikan Dan Teknologi Indonesia, vol. 4, no. 8, pp. 369–379, 2024, doi: 10.52436/1.jpti.599.
S. Sobari, A. I. Purnamasari, A. Bahtiar, and K. Kaslani, ‘Meningkatkan Model Prediksi Kelulusan Santri Tahfidz di Pondok Pesantren Al-Kautsar Menggunakan Algoritma Random Forest’, JITET (Jurnal Informatika dan Teknik Elektro Terapan), vol. 13, no. 1, pp. 732–738, 2025, doi: 10.23960/jitet.v13i1.5704.
N. Pratama, E. Setyati, J. Santoso, and A. P. Rini, ‘Random Forest Classifier Dengan Grid Search Untuk Klasifikasi Hasil Psikotes Pada Rekrutmen Dosen dan Tenaga Kependidikan’, Konvergensi, vol. 20, no. 1, pp. 18–24, 2024, doi: 10.30996/konv.v20i1.10874.
Z. Zhou, C. Qiu, and Y. Zhang, ‘A comparative analysis of linear regression, neural networks and Random Forest regression for predicting air ozone employing soft sensor models’, Scientific Reports, vol. 13, no. 1, pp. 1–23, 2023, doi: 10.1038/s41598-023-49899-0.
N. Nur, F. Wajidi, S. Sulfayanti, and W. Wildayani, ‘Implementasi Algoritma Random Forest Regression untuk Memprediksi Hasil Panen Padi di Desa Minanga’, Jurnal Komputer Terapan, vol. 9, no. 1, pp. 58–64, 2023, doi: 10.35143/jkt.v9i1.5917.
A. R. Masdian, N. Bashit, and F. Hadi, ‘Analisis Produktivitas Padi Menggunakan Algoritma Machine Learning Random Forest Di Kabupaten Batang Tahun 2018 - 2022’, Elipsoida : Jurnal Geodesi dan Geomatika, vol. 6, no. 1, pp. 43–51, 2023, doi: 10.14710/elipsoida.2023.19023.
R. Firdaus et al., ‘Implementasi Algoritma Random Forest Untuk Klasifikasi Pencemaran Udara di Wilayah Jakarta Berdasarkan Jakarta Open Data’, Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer), vol. 14, no. 2, pp. 520–525, 2024, doi: 10.37859/jf.v14i2.7669.
M. Zahara, A. Putra, F. Candra, and E. Prakasa, ‘Klasifikasi Kualitas Varietas Benih Jagung Bima 20 Menggunakan Metode Random Forest’, Jurnal Teknlogi Informatika dan Komputer, vol. 10, no. 2, pp. 367–385, 2024, doi: 10.37012/jtik.v10i2.2177.
A. Setiawan, Z. H. Nst, Z. Khairi, and L. Efrizoni, ‘Klasifikasi Tingkat Risiko Diabetes Menggunakan Algoritma Random Forest’, JIRE (Jurnal Informatika & Rekayasa Elektronika), vol. 7, no. 2, pp. 263–271, 2024, doi: 10.36595/jire.v7i2.1259.
Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, ‘An improved Random Forest based on the classification accuracy and correlation measurement of decision trees’, Expert Systems with Applications, vol. 237, no. Part B, p. 121549, 2024, doi: 10.1016/j.eswa.2023.121549.
S. Das, M. S. Imtiaz, N. H. Neom, N. Siddique, and H. Wang, ‘A hybrid approach for Bangla sign language recognition using deep transfer learning model with Random Forest classifier’, Expert Systems with Applications, vol. 213, no. Part B, p. 118914, 2023, doi: 10.1016/j.eswa.2022.118914.
DOI: https://doi.org/10.30645/kesatria.v6i1.577
DOI (PDF): https://doi.org/10.30645/kesatria.v6i1.577.g572
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: