Prediksi Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Jaringan Saraf Tiruan Dengan Algoritma Backpropagation

Opriyani Armaya Putri(1*), P Poningsih(2), Heru Satria Tambunan(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(2) AMIK Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(*) Corresponding Author

Abstract


This study aims to see the development of the number of foreign tourist arrivals in the following year. With these predictions, it is expected to be able to assist the government in making policies related to foreign tourists in accordance with their home regions. Sources of data obtained from the Central Statistics Agency. In this study, researchers used the Backpropagation Algorithm. Backpropagation Algorithm is an algorithm that serves to reduce the error rate by adjusting the weight based on the desired output and target. From the test results of foreign tourist visit data obtained in 1-4-1 architecture which shows the target is reduced by the output that SSE 1.03218 which shows that there is an increase in the number of visits as a target. From the data obtained, that the performance calculation of artificial neural networks with Backpropagation Algorithm is 83.3This research contributes to the government and the community to further increase the provision of facilities, infrastructure, infrastructure, transportation and accommodation in order to get a satisfying predicate to improve the quality of the world market.

Full Text:

PDF

References


S. Amalia, “Pengenalan Digit 0 Sampai 9 Menggunakan Ekstraksi Ciri Mfcc Dan Jaringan Syaraf Tiruan Backpropagation,” J. Tek. Elektro Itp, Vol. 6, No. 1, Pp. 1–8, 2017, Doi: 10.21063/Jte.2017.3133601.

A. S. Rachman, I. Cholissodin, And M. A. Fauzi, “Peramalan Produksi Gula Menggunakan Metode Jaringan Syaraf Tiruan,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. 2, No. 4, Pp. 1683–1689, 2018, [Online]. Available: Https://Www.Researchgate.Net/Publication/322963136.

N. P. Sakinah, I. Cholissodin, And A. W. Widodo, “Prediksi Jumlah Permintaan Semen Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Pegembangan Teknol. Inf. Dan Imlu Komput., Vol. 3, No. 1, Pp. 347–353, 2019.

A. F. Setiawan And A. K. Agung, “Klasifikasi Pola Sidik Jari Menggunakan Jaringan Syaraf Tiruan Backpropagation Untuk Analisa Karakteristik Seseorang,” Antivirus J. Ilm. Tek. Inform., Vol. 10, No. 2, Pp. 50–55, 2016, Doi: 10.35457/Antivirus.V10i2.162.

T. W. Khusniyah And S. Sutikno, “Prediksi Nilai Tukar Petani Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Sci. J. Informatics, Vol. 3, No. 1, Pp. 11–18, 2016, Doi: 10.15294/Sji.V3i1.4970.

D. Jauhari, A. Himawan, And C. Dewi, “Prediksi Distribusi Air Pdam Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Di Pdam Kota Malang,” J. Teknol. Inf. Dan Ilmu Komput., Vol. 3, No. 2, P. 83, 2016, Doi: 10.25126/Jtiik.201632155.

A. P. Windarto, “Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-Sakti (Jurnal Sains Komput. Dan Inform., Vol. 1, No. 1, Pp. 12–23, 2017.

C. Oktaviani And Afdal, “Prediksi Curah Hujan Bulanan Menggunakan Jaringan Syaraf Tiruan Dengan Beberapa Fungsi Pelatihan Backpropagation,” J. Fis. Unand, Vol. 2, No. 4, Pp. 228–237, 2013.




DOI: https://doi.org/10.30645/kesatria.v2i1.51

DOI (PDF): https://doi.org/10.30645/kesatria.v2i1.51.g51

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: