Pemodelan Prediktif Menggunakan Metode Ensemble Learning XGBoost dalam Peningkatan Akurasi Klasifikasi Penyakit Ginjal

R. Soelistijadi(1*), Th. Dwiati Wismarini(2), Sri Eniyati(3), S Sunardi(4),

(1) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(2) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(3) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(4) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(*) Corresponding Author

Abstract


Chronic Kidney Disease (CKD) is a serious global health problem. However, information about how many people are affected by CKD in several countries is not very abundant and is sometimes not the same from one source to another. This research aims to increase accuracy in classifying CKD patients using the XGBoost ensemble learning method. The XGBoost model was drilled using the CKD dataset of 400 data records which were divided into training data and test data with a ratio of 70% used as training data and 30% as test data. Then an optimization technique is carried out, namely the parameter tuning process using a grid search method to find the best value using 5 parameters, namely n_estimators, max_ depth, learning_rate, Subsample, Colsample bytree. The evaluation results using the confusion matrix, were obtained with an accuracy level of 99.16%, precision 98.17%, recall 99.16% and f1-score 99.16%. So the XGBoost algorithm implementing parameter tuning techniques is a good classification method that is good enough to be applied in CKD and Not CKD classification.

Full Text:

PDF

References


Kementerian Kesehatan Ri, “Riskedas 2018”, Laporan, Riskedas 2018 Vol.44 No.8 Hal 181-222, 2018 [Online]. Available: Http://Www.Yankes.Kemkes.Go.Id/Assets/Downloads/Pmk No. 57 Tahun 2013 Tentang Ptrm.Pdf.

M. M. El Sherbiny, E. Abdelhalim, H. El-Din Mostafa, Dan M. M. El-Seddik, “Classification Of Chronic Kidney Disease Based On Machine Learning Techniques,” Indones. J. Electr. Eng. Comput. Sci., Vol. 32, No. 2, Hal. 945–955, 2023, Doi: 10.11591/Ijeecs.V32.I2.Pp945-955.

Y. Kale, S. Rathkanthiwar, P. Fulzele, Dan N. J. Bankar, “Xgboost Learning For Detection And Forecasting Of Chronic Kidney Disease (Ckd),” Int. J. Intell. Syst. Appl. Eng., Vol. 12, No. 17s, Hal. 137–150, 2024.

A. Ogunleye Dan Q. G. Wang, “Xgboost Model For Chronic Kidney Disease Diagnosis,” Ieee/Acm Trans. Comput. Biol. Bioinforma., Vol. 17, No. 6, Hal. 2131–2140, 2020, Doi: 10.1109/Tcbb.2019.2911071.

S. M. Ganie, P. K. D. Pramanik, S. Mallik, Dan Z. Zhao, “Chronic Kidney Disease Prediction Using Boosting Techniques Based On Clinical Parameters,” Plos One, Vol. 18, No. 12 December, Hal. 1–21, 2023, Doi: 10.1371/Journal.Pone.0295234.

S. K. Ghosh Dan A. H. Khandoker, “Investigation On Explainable Machine Learning Models To Predict Chronic Kidney Diseases,” Sci. Rep., Vol. 14, No. 1, Hal. 1–15, 2024, Doi: 10.1038/S41598-024-54375-4.

Z. Salam Patrous, “Evaluating Xgboost For User Classification By Using Behavioral Features Extracted From Smartphone Sensors,” 2018.

F. Nateghi Haredasht, L. Viaene, H. Pottel, W. De Corte, Dan C. Vens, “Predicting Outcomes Of Acute Kidney Injury In Critically Ill Patients Using Machine Learning,” Sci. Rep., Vol. 13, No. 1, Hal. 1–13, 2023, Doi: 10.1038/S41598-023-36782-1.

E. Susilowati, M. Kania Sabariah, And A. Akbar Gozali, “Implementasi Metode Support Vector Machine Untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter.”

[Online].Available: Https://Www.Academia.Edu/33108996/Implementasi_Metode_Support_Vector_Machine_Untuk_Melakukan_Klasifikasi_Kemacetan_Lalu_Lintas_Pada_Twitter_Implementation_Support_Vector_Machine_Method_For_Traffic_Jam_Classification_On_Twitter.

E. Listiana, R. Muzayanah, M. A. Muslim, Dan E. Sugiharti, “Optimization Of Support Vector Machine Using Information Gain And Adaboost To Improve Accuracy Of Chronic Kidney Disease Diagnosis,” J. Soft Comput. Explor., Vol. 4, No. 3, Hal. 152–158, 2023

[Online]. Available: Https://Shmpublisher.Com/Index.Php/Joscex/Article/View/218.

T. Chen And C. Guestrin, “Xgboost: A Scalable Tree Boosting System,” In Proceedings Of The Acm Sigkdd International Conference On Knowledge Discovery And Data Mining, Association For Computing Machinery, Aug. 2016, Pp. 785–794. Doi: 10.1145/2939672.2939785.

M.D. Maulana, A.I. Hadiana, F.R. Umbara, 2023, “Algoritma Xgboost Untuk Klasifikasi Kualitas Air Minum”, Jati (Jurnal Mahasiswa Teknik Informatika), Vol. 7 No. 5, Oktober 2023.

M. Syukron, R. Santoso, And T. Widiharih, “Perbandingan Metode Smote Random Forest Dan Smote Xgboost Untuk Klasifikasi Tingkat Penyakit Hepatitis C Pada Imbalance Class Data”,

[Online]. Available: Https://Ejournal3.Undip.Ac.Id/Index.Php/Gaussian/.

Linggar Maretva Cendani, Adi Wibowo, 2022, Perbandingan Metode Ensemble Learning Pada Klasifikasi Penyakit Diabetes Jurnal Masyarakat Informatika (Jmasif).

[Online]. Available: Https://Ejournal.Undip.Ac.Id/Index.Php/Jmasif/Article/View/42912.

M. R.A Masud Dan M.R.H. Mondal, “Data-Driven Diagnosis Of Spinal Abnormalities Using Feature Selection And Machine Learning Algorithms,” Plos One, Vol. 15, No. 2, Feb. 2020, [Online].Available:Https://Journals.Plos.Org/Plosone/Article?Id=10.1371/Journal.Pone.0228422




DOI: https://doi.org/10.30645/kesatria.v5i4.507

DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.507.g502

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: