Pemodelan Prediktif Menggunakan Metode Ensemble Learning XGBoost dalam Peningkatan Akurasi Klasifikasi Penyakit Ginjal
(1) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(2) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(3) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(4) Universitas Stikubank, Semarang, Jawa Tengah, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Kementerian Kesehatan Ri, “Riskedas 2018”, Laporan, Riskedas 2018 Vol.44 No.8 Hal 181-222, 2018 [Online]. Available: Http://Www.Yankes.Kemkes.Go.Id/Assets/Downloads/Pmk No. 57 Tahun 2013 Tentang Ptrm.Pdf.
M. M. El Sherbiny, E. Abdelhalim, H. El-Din Mostafa, Dan M. M. El-Seddik, “Classification Of Chronic Kidney Disease Based On Machine Learning Techniques,” Indones. J. Electr. Eng. Comput. Sci., Vol. 32, No. 2, Hal. 945–955, 2023, Doi: 10.11591/Ijeecs.V32.I2.Pp945-955.
Y. Kale, S. Rathkanthiwar, P. Fulzele, Dan N. J. Bankar, “Xgboost Learning For Detection And Forecasting Of Chronic Kidney Disease (Ckd),” Int. J. Intell. Syst. Appl. Eng., Vol. 12, No. 17s, Hal. 137–150, 2024.
A. Ogunleye Dan Q. G. Wang, “Xgboost Model For Chronic Kidney Disease Diagnosis,” Ieee/Acm Trans. Comput. Biol. Bioinforma., Vol. 17, No. 6, Hal. 2131–2140, 2020, Doi: 10.1109/Tcbb.2019.2911071.
S. M. Ganie, P. K. D. Pramanik, S. Mallik, Dan Z. Zhao, “Chronic Kidney Disease Prediction Using Boosting Techniques Based On Clinical Parameters,” Plos One, Vol. 18, No. 12 December, Hal. 1–21, 2023, Doi: 10.1371/Journal.Pone.0295234.
S. K. Ghosh Dan A. H. Khandoker, “Investigation On Explainable Machine Learning Models To Predict Chronic Kidney Diseases,” Sci. Rep., Vol. 14, No. 1, Hal. 1–15, 2024, Doi: 10.1038/S41598-024-54375-4.
Z. Salam Patrous, “Evaluating Xgboost For User Classification By Using Behavioral Features Extracted From Smartphone Sensors,” 2018.
F. Nateghi Haredasht, L. Viaene, H. Pottel, W. De Corte, Dan C. Vens, “Predicting Outcomes Of Acute Kidney Injury In Critically Ill Patients Using Machine Learning,” Sci. Rep., Vol. 13, No. 1, Hal. 1–13, 2023, Doi: 10.1038/S41598-023-36782-1.
E. Susilowati, M. Kania Sabariah, And A. Akbar Gozali, “Implementasi Metode Support Vector Machine Untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter.”
[Online].Available: Https://Www.Academia.Edu/33108996/Implementasi_Metode_Support_Vector_Machine_Untuk_Melakukan_Klasifikasi_Kemacetan_Lalu_Lintas_Pada_Twitter_Implementation_Support_Vector_Machine_Method_For_Traffic_Jam_Classification_On_Twitter.
E. Listiana, R. Muzayanah, M. A. Muslim, Dan E. Sugiharti, “Optimization Of Support Vector Machine Using Information Gain And Adaboost To Improve Accuracy Of Chronic Kidney Disease Diagnosis,” J. Soft Comput. Explor., Vol. 4, No. 3, Hal. 152–158, 2023
[Online]. Available: Https://Shmpublisher.Com/Index.Php/Joscex/Article/View/218.
T. Chen And C. Guestrin, “Xgboost: A Scalable Tree Boosting System,” In Proceedings Of The Acm Sigkdd International Conference On Knowledge Discovery And Data Mining, Association For Computing Machinery, Aug. 2016, Pp. 785–794. Doi: 10.1145/2939672.2939785.
M.D. Maulana, A.I. Hadiana, F.R. Umbara, 2023, “Algoritma Xgboost Untuk Klasifikasi Kualitas Air Minum”, Jati (Jurnal Mahasiswa Teknik Informatika), Vol. 7 No. 5, Oktober 2023.
M. Syukron, R. Santoso, And T. Widiharih, “Perbandingan Metode Smote Random Forest Dan Smote Xgboost Untuk Klasifikasi Tingkat Penyakit Hepatitis C Pada Imbalance Class Data”,
[Online]. Available: Https://Ejournal3.Undip.Ac.Id/Index.Php/Gaussian/.
Linggar Maretva Cendani, Adi Wibowo, 2022, Perbandingan Metode Ensemble Learning Pada Klasifikasi Penyakit Diabetes Jurnal Masyarakat Informatika (Jmasif).
[Online]. Available: Https://Ejournal.Undip.Ac.Id/Index.Php/Jmasif/Article/View/42912.
M. R.A Masud Dan M.R.H. Mondal, “Data-Driven Diagnosis Of Spinal Abnormalities Using Feature Selection And Machine Learning Algorithms,” Plos One, Vol. 15, No. 2, Feb. 2020, [Online].Available:Https://Journals.Plos.Org/Plosone/Article?Id=10.1371/Journal.Pone.0228422
DOI: https://doi.org/10.30645/kesatria.v5i4.507
DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.507.g502
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: