Penerapan Algoritma K-Means Untuk Klasterisasi Akseptor Keluarga Berencana Modern di Sumatera Barat
(1) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(2) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(3) Universitas Putra Indonesia “YPTK” Padang, Indonesia
(*) Corresponding Author
Abstract
The Regulation of the National Population and Family Planning Agency number 11 of 2020 concerning modern contraceptive methods including the Female Operation Method (MOW)/female sterilization, Male Operation Method (MOP)/male sterilization, IUD/spiral/Intrauterine Contraceptive Device (IUD), implant/implant, injection, pill, and condom. This study aims to apply and test the K-Means algorithm by measuring the level of accuracy in clustering Districts/Cities based on the use of modern contraceptives. The method used in this study is the K-Means Clustering algorithm to produce 3 clusters, namely district/city clusters with high, medium, and low acceptor usage. The stages of the K-Means Clustering algorithm are as follows: Determining the number of clusters, Determining the initial centroid point randomly, Calculating the closest distance between data and centroid, Grouping data into each cluster, If the cluster changes, the process continues to the next iteration, if there is no change, the iteration process is stopped. The data set processed in this study came from the BKKBN of West Sumatra Province. This study used a data set of 383,609 from 19 districts/cities based on the use of modern contraceptives. The results of this study indicate that the performance of the K-Means method in cluster analysis produces 3 clusters consisting of low modern contraceptive users of 5 districts/cities in cluster 0 or 26.32%, moderate modern contraceptive users of 7 districts/cities in cluster 1 or 36.84%. users of modern contraceptives are high as many as 7 districts/cities in cluster 2 or 36.84%. Therefore, this study can be a reference for district/city governments in intervening in population control and family planning programs.
Full Text:
PDFReferences
. Undang-undang No 52 Tahun 2009 tentang Perkembangan Kependudukan Dan Pembangunan Keluarga Berencana.
. Badan Keipeinduiduikan dan Keiluiarga Beireincana Nasional 2023, Peiratuiran Badan Nomor 1 tahun 2023 tentang pemenuhan kebutuhan alat dan obat kontrasepsi bagi pasangan usia subur.
. Dinda Fitria Sanda, Emy Rianti, and Heni Nurhaeni. "Kesiapan Ibu Hamil Trimester III dalam Memilih Alat Kontrasepsi." Jurnal Keperawatan 16.1 (2024): 55-64.
. Adella, Tiara, Rita Damayanti, and Martya Rahmaniati Makful. "Hubungan Kebutuhan Pelayanan Keluarga Berencana pada Remaja Belum Kawin dengan Niat Menggunakan Kontrasepsi di Masa Dewasa (Analisis SDKI 2017)." Indonesian Journal of Health Promotion and Behavior 3.1 (2021): 1-7.
. Mustofa, Zamzam, Nafiah Nafiah, and Dyna Prasetya Septianingrum. "Hukum Penggunaan Alat Kontrasepsi Dalam Prespektif Agama Islam." MA'ALIM: Jurnal Pendidikan Islam 1.02 (2020): 85-103.
. Tanimu, Mohammed, Emem Victor Umanah, and Haruna Umar Yahaya. "Trends on modern family planning methods in Abuja, Nigeria (2010-2021)." International Journal of Epidemiology and Health Sciences 5. Continuous (2024).
. Gebrekidan, Hailay, Mussie Alemayehu, and Gurmesa Tura Debelew. "Determinants of unmet need for modern contraceptives in Ethiopia." BMJ open 14.5 (2024): e079477.
. Memon, Zahid Ali, et al. "Effective strategies for increasing the uptake of modern methods of family planning in South Asia: a systematic review and meta-analysis." BMC Women's Health 24.1 (2024): 13.
. Tanimu, Mohammed, Emem Victor Umanah, and Haruna Umar Yahaya. "Trends on modern family planning methods in Abuja, Nigeria (2010-2021)." International Journal of Epidemiology and Health Sciences 5. Continuous (2024).
. Leza, Maria Atalya Angelus, Nengah Widya Utami, and Putri Anugrah Cahya Dewi. "Prediksi pretasi siswa SMAS Katolik Santo Yoseph Denpasar Berdasarkan Kedisiplina dan Tingkat Ekonomi Orang Tua Menggunakan metode Knowledge Discovery In DataBase dan Algoritma Regresi Linier Berganda." JATI (Jurnal Mahasiswa Teknik Informatika) 8.1 (2024): 373-379.
. Hendrastuty, Nirwana. "Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa." Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM) 3.1 (2024): 46-56.
. Alvianatinova, Via, et al. "Penerapan Algoritma K-Means Clustering Dalam pengelompokan Data Penjualan Supermaket Berdasarkan Cabang (Branch)." JATI (Jurnal Mahasiswa Teknik Informatika) 8.2 (2024): 1529-1535.
. Huang, Zengyi, et al. "Application of Machine Learning-Based K-Means Clustering for Financial Fraud Detection." Academic Journal of Science and Technology 10.1 (2024): 33-39.
. Pangestu, Ferdy Pangestu Ferdy, Nur Yasin Nur Yasin, and Ronald Chistover Ronald Chistover Hasugian. "Penerapan Algoritma K-Means Untuk Mengklasifikasi Data Obat." Jurnal Sisfokom (Sistem Informasi dan Komputer) 12.1 (2023): 53-62.
. Fajar, Miftahul, Nining Rahaningsih, and Raditya Danar Dana. "Analisis Pola Penjualan Obat di Apotik An-Naafi Menggunakan Metode K-Means Clustering." JATI (Jurnal Mahasiswa Teknik Informatika) 8.1 (2024): 486-492.
. Fantaye, Fitsum Tariku, and Solomon Abrha Damtew. "Women decision making on use of modern family planning methods and associated factors, evidence from PMA Ethiopia." Plos one 19.2 (2024): e0298516.
. Zhao, Yiding. "Research on E-Commerce Retail Demand Forecasting Based on SARIMA Model and K-means Clustering Algorithm." Academic Journal of Science and Technology 10.3 (2024): 226-231.
DOI: https://doi.org/10.30645/kesatria.v5i4.497
DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.497.g492
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: