Penerapan Algoritma Prophet Facebook untuk Memprediksi Jumlah Calon Mahasiswa Baru

Evydian Rosa Putri(1*), Budhi Kristianto(2),

(1) Universitas Kristen Satya Wacana, Salatiga, Jawa Tengah, Indonesia
(2) Universitas Kristen Satya Wacana, Salatiga, Jawa Tengah, Indonesia
(*) Corresponding Author

Abstract


According to the data set of the Central Statistics Agency of the Ministry of Education, Culture, Research, and Technology, the number of students in Indonesia in 2021 was 8.96 million, and in 2022 the number of students increased to 9.32 million. Of the 9.32 million students in Indonesia, 4.49 million students pursue higher education at private universities (Ministry of Education, Culture, Research and Technology, 2023). This was followed by the number of universities which also increased, in 2022 reaching 4,004, up 0.73% compared to the previous year (BPS, 2023). In this case, XYZ University is affected by changes in the number of prospective new students, especially at the Faculty of Information Technology. The rapidly developing technology of this era triggers prospective students to learn about Information Technology. Thus, a prediction is carried out to help the Faculty of Information Technology of XYZ University know the number of enthusiasts for each study program and help arrange their resources. The prediction results of each study program show a deviation <10 compared to the actual data and an average RMSE of 0.44578.

Full Text:

PDF

References


Bahauddin, A. Dwiki Darmawan, S. A. Ihsani, and N. Jahra Izdihar, “Peramalan Utilitas Listrik dan Gas menggunakan Bahasa Pemrograman Python dan FBProphet,” Journal Industrial Servicess, vol. 6, no.2, pp. 93-98, 2021, doi: 10.36055/62002.

R. S. Santoso, F. Kartika, and S. Dewi, “Konfigurasi Model Prophet Untuk Prediksi Harga Saham Sektor Teknologi di Indonesia Yang Akurat,” Jurnal Buana Informatika, vol. 15, no. 1, pp. 50-58, 2024, doi: 10.24002/jbi.v15i1.8634.

F. Oktavia and A. Witanti, “Implementasi Prophet Forecasting Model Dalam Prediksi Kualitas Udara Daerah Istimewa Yogyakarta,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 11, no. 1, pp. 64-74, 2024, doi: 10.35957/jatisi.v11i1.6804.

F. Mu’minin and A. Gunaryati, “Prediksi Kunjungan Wisatawan Mancanegara Melalui Pintu Udara Menggunakan ARIMA, Glmnet, dan Prophet Prediction of Foreign Tourist Visits via Airline using ARIMA, Glmnet, and Prophet,” Techno.COM, vol. 21, no. 1, pp. 149-156, 2022, doi: 10.33633/tc.v21i1.5695.

K. Tanuwidjaja and A. Widjaja, “Prediksi dan Analisis Time Series pada Data COVID-19,” Jurnal Strategi, vol. 4, no.1, pp. 144-158, 2022.

A. Primawati, I. S. Sitanggang, Annisa, and D. A. Astuti, “Perbandingan Kinerja LSTM dan Prophet untuk Prediksi Deret Waktu (Studi Kasus Produksi Susu Sapi Harian),” JEPIN: Jurnal Edukasi dan Penelitian Informatika, vol. 9, no. 3, pp. 428-435, 2023, doi: 10.26418/jp.v9i3.72031.

E. G. Syuhada and M. Y. H. Setyawan, “Analisis Komparasi Metode Prophet dan Metode Exponential Smoothing dalam Peramalan Jumlah Pengangguran di Jawa Barat: Systematic Literature Review,” JATI: Jurnal Mahasiswa Teknik Informatika, vol. 7 no. 2, pp. 1369-1377, 2023, doi: 10.36040/jati.v7i2.6827.

M. Harahap, A. Zaki Andika, A. M. Husein, and A. Dharma, “Analisis Tren dan Perkiraan Pandemi Covid-19 di Indonesia Menggunakan Peramalan Metode Prophet: Sebelum dan Sesudah Aturan New Normal,” JTIIK: Jurnal Teknologi Informasi dan Ilmu Komputer ,vol. 9, no. 1, pp. 51–60, 2022, doi: 10.25126/jtiik.202294060.

F. T. Br Sitepu, V. A. Sirait, and R. Yunis, “Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Prophet Facebook,” Paradigma - Jurnal Komputer dan Informatika, vol. 23, no. 1, Mar. 2021, doi: 10.31294/p.v23i1.9756.

C. Chandra and S. Budi, “Analisis Komparatif ARIMA dan Prophet dengan Studi Kasus Dataset Pendaftaran Mahasiswa Baru,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2676.

M. A. Muzakki, M.A. Sabila, S. Sundari, B. Wisnuadhi, "Analisis Algoritma Prophet untuk Memprediksi Harga Pangan di Kota Bandung", Prosiding The 12 th Industrial Research Workshop and National Seminar Bandung, 4-5 Agustus, 2021.

F. B. Prakoso, G. Darmawan, and A. Bachrudin, “Penerapan Metode Facebook Prophet Untuk Meramalkan Jumlah Penumpang Trans Metro Bandung Koridor 1,” ARMADA : Jurnal Penelitian Multidisiplin, vol. 1, no. 3, pp. 133–147, Mar. 2023, doi: 10.55681/armada.v1i3.416.

Y. A. Auliya, Y. Nurdiansyah, and A. P. Astuti, “Peramalan Jumlah Pengunjung Objek Wisata Gumul Paradise Island Kabupaten Kediri Menggunakan Metode Prophet,” INFORMAL: Informatics Journal, vol.8, no.1, pp. 37-43, 2023, doi: 10.19184/isj.v8i1.35605.

M. A. Ridla, N. Azise, and M. Rahman, “Perbandingan Model Time Series Forecasting Dalam Memprediksi Jumlah Kedatangan Wisatawan Dan Penumpang Airport,” SIMKOM, vol. 8, no. 1, pp. 1–14, Jan. 2023, doi: 10.51717/simkom.v8i1.103.

D. Rizkya, H. Roosaputri, and C. Dewi, “Perbandingan Algoritma ARIMA, Prophet, dan LSTM dalam Prediksi Penjualan Tiket Wisata Taman Hiburan (Studi Kasus: Saloka Theme Park),” KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 4, no. 3, pp. 507-517, 2023, doi: 10.30645/kesatria.v4i3.199.




DOI: https://doi.org/10.30645/kesatria.v5i4.481

DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.481.g476

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: