Analisis Perbandingan Kinerja DWT dan SWT dalam Pengenalan Emosi Berbasis EEG Menggunakan XGBoost

Sonia Anjani Prameswari(1*), Kusrini Kusrini(2),

(1) Universitas Amikom Yogyakarta, Indonesia
(2) Universitas Amikom Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Emotion recognition from electroencephalography (EEG) signals is crucial for human-computer interaction and diagnosing emotional disorders. This study evaluates the impact of feature extraction methods on the performance of XGBoost in classifying emotions in game players using EEG data. It compares the efficacy of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) combined with XGBoost, aiming to identify the most effective feature extraction method for improving emotion classification accuracy. Using the GAMEEMO dataset, which includes preprocessed EEG signals from game players, three scenarios were analyzed: XGBoost without feature extraction, XGBoost with DWT, and XGBoost with SWT. The results demonstrate that DWT significantly enhances classification performance, achieving higher accuracy, precision, and recall compared to SWT and no feature extraction. DWT's ability to capture rapid frequency changes in EEG signals is a key factor in its superior performance. Future work should focus on refining data preprocessing techniques, exploring additional feature extraction methods, and optimizing XGBoost hyperparameters to further enhance emotion recognition accuracy. This research provides valuable insights into the comparative effectiveness of different wavelet transform methods for EEG-based emotion classification, emphasizing the potential of DWT for improved performance

Full Text:

PDF

References


B. Chakravarthi, S. C. Ng, M. R. Ezilarasan, and M. F. Leung, “EEG-based emotion recognition using hybrid CNN and LSTM classification,” Front. Comput. Neurosci., vol. 16, no. October, pp. 1–9, 2022, doi: 10.3389/fncom.2022.1019776.

T. Wang, X. Huang, Z. Xiao, W. Cai, and Y. Tai, “EEG emotion recognition based on differential entropy feature matrix through 2D-CNN-LSTM network,” EURASIP J. Adv. Signal Process., vol. 2024, no. 1, 2024, doi: 10.1186/s13634-024-01146-y.

S. Sheykhivand, Z. Mousavi, T. Y. Rezaii, and A. Farzamnia, “Recognizing Emotions Evoked by Music Using CNN-LSTM Networks on EEG Signals,” IEEE Access, vol. 8, pp. 139332–139345, 2020, doi: 10.1109/ACCESS.2020.3011882.

T. B. Alakus, M. Gonen, and I. Turkoglu, “Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO,” Biomed. Signal Process. Control, vol. 60, p. 101951, 2020, doi: 10.1016/j.bspc.2020.101951.

Y. Yin, X. Zheng, B. Hu, Y. Zhang, and X. Cui, “EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM,” Appl. Soft Comput., vol. 100, p. 106954, 2021, doi: 10.1016/j.asoc.2020.106954.

Y. Xie and S. Oniga, “A Review of Processing Methods and Classification Algorithm for EEG Signal,” Carpathian J. Electron. Comput. Eng., vol. 13, no. 1, pp. 23–29, 2020, doi: 10.2478/cjece-2020-0004.

S.-P. Kim, “Preprocessing of EEG,” Comput. EEG Anal., pp. 15–33, 2018, doi: 10.1007/978-981-13-0908-3.

I. Wijayanto, R. Hartanto, H. A. Nugroho, and N. A. Setiawan, “A study on signal complexity measurement for epileptic seizure detection,” 2019 IEEE 9th Int. Conf. Syst. Eng. Technol. ICSET 2019 - Proceeding, no. October, pp. 320–325, 2019, doi: 10.1109/ICSEngT.2019.8906319.

A. S. Al-Fahoum and A. A. Al-Fraihat, “Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains,” ISRN Neurosci., vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/730218.

N. Ghassemzadeh and S. Haghipour, “A review on EEG based brain computer interface systems feature extraction methods,” Int. J. Adv. Biol. Biomed. Res., vol. 4, no. 2, pp. 126–132, 2016, doi: 10.18869/IJABBR.2016.117.

M. F. Wahab and T. C. O’Haver, “Wavelet transforms in separation science for denoising and peak overlap detection,” J. Sep. Sci., vol. 43, no. 9–10, pp. 1998–2010, 2020, doi: 10.1002/jssc.202000013.

D. Labate, F. L. Foresta, G. Inuso, and F. Morabito, “Remarks about Wavelet Analysis in the EEG Artifacts Detection,” Ital. Work. Neural Nets, 2011, doi: 10.3233/978-1-60750-692-8-99.

M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, “Noise reduction using an undecimated discrete wavelet transform,” IEEE Signal Process. Lett., vol. 3, no. 1, pp. 10–12, 1996, doi: 10.1109/97.475823.

V. Gupta, R. Mahle, and A. Shukla, “Removal of Gaussian noise from stationary image using shift invariant wavelet transform,” IFIP Int. Conf. Wirel. Opt. Commun. Networks, WOCN, 2013, doi: 10.1109/WOCN.2013.6616223.

Z. Yu, D. Whitcombe, and P. Technology, “Potential timing shift errors when using the discrete wavelet transform with seismic data processing SEG Houston 2009 International Exposition and Annual Meeting SEG Houston 2009 International Exposition and Annual Meeting,” pp. 3218–3222, 2009, doi: 10.1190/1.3255526.

N. A. Abdul Razak, R. Aripin, and M. T. Ismail, “Denoising Malaysian time series data: A comparison using discrete and stationary wavelet transforms,” CSSR 2010 - 2010 Int. Conf. Sci. Soc. Res., no. Cssr, pp. 412–415, 2010, doi: 10.1109/CSSR.2010.5773810.

F. N. Jamaluddin, S. A. Ahmad, S. B. M. Noor, W. Z. W. Hassan, A. Yaacob, and Y. Adam, “Performance of DWT and SWT in muscle fatigue detection,” ISSBES 2015 - IEEE Student Symp. Biomed. Eng. Sci. By Student Student, pp. 50–53, 2016, doi: 10.1109/ISSBES.2015.7435892.

G. Shiferaw, A. Mamuye, and M. Piangerelli, Stationary Wavelet Transform for Automatic Epileptic Seizure Detection, vol. 1026. 2019. doi: 10.1007/978-3-030-26630-1_4.

X. Zhou, C. Zhou, and B. C. Stewart, “Comparisons of discrete wavelet transform, wavelet packet transform and stationary wavelet transform in denoising PD measurement data,” Conf. Rec. IEEE Int. Symp. Electr. Insul., vol. 2007, pp. 237–240, 2007, doi: 10.1109/elinsl.2006.1665301.

A. Miftakus et al., “Comparison of Several Wavelet Transform Techniques for Inferring ECG Signal Classification,” SIET ’23 Int. Conf. Sustain. Inf. Eng. Technol., vol. 8, pp. 167–172, 2023, doi: 10.1145/3626641.3627216.

F. A. Alturki, K. Alsharabi, A. M. Abdurraqeeb, and M. Aljalal, “Eeg signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques†,” Sensors (Switzerland), vol. 20, no. 9, 2020, doi: 10.3390/s20092505.

A. Tiwari and A. Chaturvedi, “A Multiclass EEG Signal Classification Model using Spatial Feature Extraction and XGBoost Algorithm,” IEEE Int. Conf. Intell. Robot. Syst., pp. 4169–4175, 2019, doi: 10.1109/IROS40897.2019.8967868.

F. Wang, Y.-C. Tian, X. Zhang, and F. Hu, “An ensemble of Xgboost models for detecting disorders of consciousness in brain injuries through EEG connectivity,” Expert Syst. Appl., vol. 198, 2022, doi: https://doi.org/10.1016/j.eswa.2022.116778.

L. Wei and C. Mooney, “Epileptic Seizure Detection in Clinical EEGs Using an XGboost-based Method,” 2020 IEEE Signal Process. Med. Biol. Symp. SPMB 2020 - Proc., 2020, doi: 10.1109/SPMB50085.2020.9353625.

J. Frery, A. Habrard, M. Sebban, and L. He-Guelton, “Non-Linear Gradient Boosting for Class-Imbalance Learning,” Proc. Mach. Learn. Res., vol. 94, pp. 38–51, 2018.

J. Hu, “Automated detection of driver fatigue based on AdaBoost classifier with EEG signals,” Front. Comput. Neurosci., vol. 11, no. August, pp. 1–10, 2017, doi: 10.3389/fncom.2017.00072.

T. Zhang, W. Z. Chen, and M. Y. Li, “Recognition of epilepsy electroencephalography based on AdaBoost algorithm,” Wuli Xuebao/Acta Phys. Sin., vol. 64, no. 12, 2015, doi: 10.7498/aps.64.128701.

S. Mallat, A Wavelet Tour of Signal Processing. 2008. doi: 10.1016/b978-012466606-1/50004-0.

R. C. Guido, “Practical and Useful Tips on Discrete Wavelet Transforms [sp Tips & Tricks],” IEEE Signal Process. Mag., vol. 32, no. 3, pp. 164–166, 2015, doi: 10.1109/MSP.2014.2368586.

A. Al-Asmari, Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications. 2013. doi: 10.5772/3424.

D. Percival and A. Walden, Introduction to Wavelets - Presentation. 2000. doi: 10.1017/CBO9780511841040.002.

Zhou Yu, J. Dellinger, P. Gutowski, and P. Garossino, “Seismic Resolution Enhancement In the Wavelet-transform Domain,” Seg Tech. Progr. Expand. Abstr., no. October, pp. 1–3, 2004, doi: 10.1190/1.1845190.

S. H. Kamel, S. E. El-Khamy, and M. B. Abdel-Malek, “An improved compressed wideband spectrum sensing technique based on stationary wavelet transform in Cognitive Radio systems,” 2014 31th URSI Gen. Assem. Sci. Symp. URSI GASS 2014, no. 1, pp. 14–17, 2014, doi: 10.1109/URSIGASS.2014.6929237.

S. Seker, E. Karatoprak, A. H. Kayran, and T. Senguler, “Stationary wavelet transform for fault detection in rotating machinery,” Wavelet Appl. Ind. Process. V, vol. 6763, no. 2007, p. 67630A, 2007, doi: 10.1117/12.735537.

Y. Zhang, S. Wang, Y. Huo, L. Wu, and A. Liu, “Feature extraction of brain MRI by stationary wavelet transform and its applications,” J. Biol. Syst., vol. 18, no. SPEC. ISSUE 1, pp. 115–132, 2010, doi: 10.1142/S0218339010003652.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 785–794, 2016, doi: 10.48550/arXiv.1603.02754.




DOI: https://doi.org/10.30645/kesatria.v5i4.479

DOI (PDF): https://doi.org/10.30645/kesatria.v5i4.479.g474

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: