Analisis Pengelompokan Jumlah Penumpang Bus Trans Jateng Menggunakan Metode Clustering K-Means Dan Agglomerative Hierarchical Clustering (AHC)

Muhammad Ryqo Jallu Wicaksono(1*), Sri Yulianto Joko Prasetyo(2),

(1) Universitas Kristen Satya Wacana, Salatiga, Indonesia
(2) Universitas Kristen Satya Wacana, Salatiga, Indonesia
(*) Corresponding Author

Abstract


This study aims to analyze the clustering of Trans Jateng bus passenger numbers using the K-means clustering method and Agglomerative Hierarchical Clustering (AHC). Data on the number of Trans Jateng bus passengers from the Central Java Transportation Department is used to group passengers based on bus routes and shelters. The K-means method produces 3 clusters with different data quantities for each cluster, while AHC also produces 3 clusters with different patterns. The analysis results show that the K-means method provides more measurable results compared to the AHC method in clustering the Trans Jateng bus passenger data. The information obtained from this analysis can be used to improve Trans Jateng bus transportation services and provide useful insights for decision-makers. Thus, this research contributes to the field of public transportation data analysis and clustering techniques

Full Text:

PDF

References


F. Bimantoro Putra, A. Tri Rian Dani, and S. Wigantono, “Penerapan Algoritma Hierarchical Clustering Dalam Pengelompokkan Kabupaten/Kota Di Papua Berdasarkan Indikator Kemiskinan,” Math. Appl. J., vol. 5, no. 23, pp. 118–126, 2023.

M. I. Sahputra, A. Triayudi, and A. Rubhasy, “Analisis Faktor Yang Mempengaruhi Penumpang Angkutan Umum Beralih Ke Transportasi Online Go-Jek Menggunakan Metode K-Means Clustering,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 63–69, 2022, doi: 10.35870/jtik.v6i1.381.

A. Permadi and Y. A. Wiyaja, “Pengelompokan Terbaik Menggunakan Algoritma K-Means Pada Dataset Bus Biskita Bogor,” Intern. (Information Syst. Journal), vol. 6, no. 1, pp. 88–100, 2023, doi: 10.32627/internal.v6i1.689.

W. Widyawati, W. L. Y. Saptomo, and Y. R. W. Utami, “Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan,” J. Ilm. SINUS, vol. 18, no. 1, p. 75, 2020, doi: 10.30646/sinus.v18i1.448.

N. Hikmah, D. Ariyanti, and M. Sugesti, “Penerapan Teknik Data Mining untuk Clustering Armada pada PT. Siaga Transport Indonesia Menggunakan Metode k-Means,” Explore, vol. 9, no. 1, p. 8, 2019, doi: 10.35200/explore.v9i1.116.

A. F. Dewi and K. Ahadiyah, “Agglomerative Hierarchy Clustering Pada Penentuan Kelompok Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Pendidikan,” Zeta - Math J., vol. 7, no. 2, pp. 57–63, 2022, doi: 10.31102/zeta.2022.7.2.57-63.

M. F. Daffauzan, “Analisa Penumpang Bus Transjakarta dengan Metode K-Means,” J. Comput. Sci. Inf. Syst. J-Cosys, vol. 3, no. 2, pp. 61–64, 2023, doi: 10.53514/jco.v3i2.395.

Ramadhana, Islamiyah, and A. P. A. Masa, “Penerapan Data Mining Menggunakan Metode K-Means Clustering Pada Data Ekspor Batubara,” Adopsi Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 35–42, 2023, doi: 10.30872/atasi.v2i1.595.

A. Supriyatna, I. Carolina, S. Janti, and A. Haidir, “Clustering Koridor Transjakarta Berdasarkan Jumlah Penumpang Dengan Algoritma K-Means,” J. Sains Komput. Inform. (J-SAKTI, vol. 4, no. 2, pp. 682–693, 2020.

A. Azzahra and A. W. Wijayanto, “Perbandingan Agglomerative Hierarchical dan K-Means Dalam Pengelompokkan Provinsi Berdasarkan Pelayanan Kesehatan Maternal,” Sist. J. Sist. Inf., vol. 11, no. 2, pp. 481–495, 2022, [Online]. Available: http://download.garuda.kemdikbud.go.id/article.php?article=2929100%5C&val=10006%5C&title=Comparison of Agglomerative Hierarchical and K-Means in Grouping Provinces Based on Maternal Health Services.




DOI: https://doi.org/10.30645/kesatria.v5i3.453

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.453.g448

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: