Analisis RFM dan K-Means Clustering untuk Segmentasi Pelanggan pada PT. Sanutama Bumi Arto

Wiendha Artieka Silamantha(1*), Kristophorus Hadiono(2),

(1) Universitas Stikubank, Indonesia
(2) Universitas Stikubank, Indonesia
(*) Corresponding Author

Abstract


This research aims to segment customers at PT. Sanutama Bumi Arto by applying RFM (Recency, Frequency, Monetary) analysis combined with the K-Means Clustering algorithm. RFM analysis is used to identify customer purchasing characteristics based on recency, frequency of purchases and total purchase value (monetary). Then, the K-Means algorithm is used to group customers into different segments based on the similarity of RFM characteristics. This research uses customer transaction data from PT. Sanutama Bumi Arto. The research results show that there are two customer clusters with different characteristics, namely customers with low purchasing levels and customers with high purchasing levels. Customer clusters with high purchasing levels have higher recency, frequency and monetary values compared to customer clusters with low purchasing levels. Cluster evaluation was carried out using the Silhoutte Score (0.44), WSS (972.19) and BSS (1112.73) metrics, which shows that clustering has good performance. It is hoped that the results of this research can provide valuable insight for PT. Sanutama Bumi Arto in understanding customer behavior and developing more effective marketing strategies.

Full Text:

PDF

References


N. L. Rane, A. Achari, and S. P. Choudhary, “Enhancing customer loyalty through quality of service: Effective strategies to improve customer satisfaction, experience, relationship, and engagement,” International Research Journal of Modernization in Engineering Technology and Science, vol. 5, no. 5, pp. 427–452, 2023.

M. Ilmi and C. A. Zulkarnain, “Strategi Pemasaran Melalui Promosi, Harga Dan Kualitas Pelayanan Untuk Meningkatkan Kepuasan Konsumen Pada Pt Garuda Indonesia (Persero) Tbk,” Jurnal Ilmiah Manajemen Ekonomi Dan Akuntansi (JIMEA), vol. 1, no. 1, pp. 66–73, 2023.

K. Tabianan, S. Velu, and V. Ravi, “K-means clustering approach for intelligent customer segmentation using customer purchase behavior data,” Sustainability, vol. 14, no. 12, p. 7243, 2022.

F. Yoseph, N. H. Ahamed Hassain Malim, M. Heikkilä, A. Brezulianu, O. Geman, and N. A. Paskhal Rostam, “The impact of big data market segmentation using data mining and clustering techniques,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6159–6173, 2020.

R. Siagian, P. Sirait, and A. Halim, “Penerapan Algoritma K-Means dan K-Medoids untuk Segmentasi Pelanggan pada Data Transaksi E-Commerce,” SISTEMASI: Jurnal Sistem Informasi, vol. 11, no. 2, 2022.

M. Schott, “K-Means Clustering Algorithm for Machine Learning ,” Capital One Tech on Medium.

E. Patimah, E. Ermatita, and N. Chamidah, “Analisis Cluster Kepuasan Pengguna Terhadap Layanan Shopee Menggunakan Algoritma K-Means,” Informatik: Jurnal Ilmu Komputer, vol. 17, no. 3, pp. 209–217, 2021.

C. Sreedhar, N. Kasiviswanath, and P. Chenna Reddy, “Clustering large datasets using K-means modified inter and intra clustering (KM-I2C) in Hadoop,” J Big Data, vol. 4, no. 1, 2017, doi: 10.1186/s40537-017-0087-2.

A. Apichottanakul, M. Goto, K. Piewthongngam, and S. Pathumnakul, “Customer behaviour analysis based on buying-data sparsity for multi-category products in pork industry: A hybrid approach,” Cogent Eng, vol. 8, no. 1, 2021, doi: 10.1080/23311916.2020.1865598.

G. Arseta and H. D. Purnomo, “Analisa Segmentasi Customer Pada Perusahaan Bisnis Properties Menggunakan Model RFM (Kasus PT. Pollux Aditama Kencana),” 2023.

B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering,” Jurnal Terapan Teknologi Informasi, vol. 2, no. 1, pp. 23–32, 2018, doi: 10.21460/jutei.2017.21.76.

A. T. Widiyanto and A. Witanti, “Segmentasi Pelanggan Berdasarkan Analisis RFM Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran (Studi Kasus PT Coversuper Indonesia Global),” KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, vol. 1, no. 1, pp. 204–215, 2021.




DOI: https://doi.org/10.30645/kesatria.v5i3.448

DOI (PDF): https://doi.org/10.30645/kesatria.v5i3.448.g443

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: