Klasifikasi Varietas Benih Padi Berdasarkan Morfologi dengan Algoritma Random Forest

Muhamad Hafidz Ghifary(1*), Enny Itje Sela(2),

(1) Universitas Teknologi Yogyakarta, Indonesia
(2) Universitas Teknologi Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Rice seeds are one of the main elements in agricultural businesses. The choice of type of rice seed planted can influence the quality of the harvest obtained. The large number of varieties of rice seeds with similar shapes makes identifying the type of rice seed an activity that is not easy and requires experts to do. One fairly fast way to identify rice seed varieties is to use machine learning technology. This research will implement machine learning classification algorithms, namely KNN, Naïve Bayes, and Random Forest. Identification of rice seed varieties is carried out based on the morphological features of the seeds. The dataset used is in the form of seed morphological feature values, namely aspect ratio, solidity, circumference, area, area, roundness, circularity and equivalent diameter. Research stages starting from preprocessing, feature extraction, and experimental parameter values were carried out to find the model with the best performance. Feature selection can increase the testing accuracy on KNN and Random Forest models. The test results obtained an accuracy of 78.3% with KNN, 61.7% using Naïve Bayes, and 90% using Random Forest.

Full Text:

PDF

References


Agus, Raja T. A., dan Mardalius. (2019). “Kombinasi Metode Ahp Dan Weight Product Dalam Menganalisis Benih Padi Unggul”. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol 6(1), hal 19-24.

Fabiyi, S. D., Vu, H., Tachtatzis, C., Murray, P., Harle, D., Dao, T. K., dan Marshall, S. (2020). “Varietal classification of rice seeds using RGB and hyperspectral images”. IEEE Access, vol 8, Hal 22493-22505

Pebriadi, M. S., dan Saubari, N. (2019). “Penggunaan Seleksi Fitur Untuk Klasifikasi Benih Padi Rawa Kalimantan Selatan Berdasarkan Ciri Fisik”. Jurnal Teknoinfo, vol 13(1), hal 17-21.

Jumadi, J., Yupianti, Y., dan Sartika, D. (2021). “Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering”. JST (Jurnal Sains dan Teknologi), vol 10(2), hal 148-156.

Fadjeri, A., Saputra, B. A., Ariyanto, D. K. A., dan Kurniatin, L. (2022). “Karakteristik Morfologi Tanaman Selada Menggunakan Pengolahan Citra Digital”. Jurnal Ilmiah Sinus (JIS), vol, 20(2), hal 1-12.

Retnoningsih, E., dan Pramudita, R. (2020). “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python”. Bina Insani Ict Journal, vol 7(2), hal 156-165.

Suprio, Yoyon A. B., dan Najib, M. (2023). “Implementasi Naïve Bayes Terhadap Kesadaran Keamanan Informasi Dengan Infeksi Virus Pada Computer”. SISFOTENIKA, vol 13(2), hal 162-171.

Sela, E. I., Pulungan, R., Widyaningrum, R., dan Shantiningsih, R. R. (2019). “Method for automated selection of the trabecular area in digital periapical radiographic images using morphological operations”. Healthcare Informatics Research, vol 25(3), hal 193-200.

Rachmat, R., dan Nurhaedar, N. (2020). “Improvement Of Sobel & Canny Edge Evoked Technique Using Mathematics Morphology Operation”. JUSITI: Jurnal Sistem Informasi dan Teknologi Informasi, vol 9(2), hal 195-201.

Martín-Gómez, J. J., Rodríguez-Lorenzo, J. L., Juan, A., Tocino, Á., Janousek, B., dan Cervantes, E. (2022). “Seed morphological properties related to taxonomy in Silene L. species”. Taxonomy, vol 2(3), hal 298-323.

Romadloni, N. T., dan Pardede, H. F. (2019). “Seleksi Fitur Berbasis Pearson Correlation Untuk Optimasi Opinion Mining Review Pelanggan”. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol 3(3), hal 505-510




DOI: https://doi.org/10.30645/kesatria.v5i2.371

DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.371.g368

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: