Penerapan Algoritma K-Means pada Ketersediaan Lapangan Olahraga Setiap Kelurahan Di Indonesia

Cristo Dhear Harafenta Lumbantobing(1*), S Saifullah(2), Fitri Rizki(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(2) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(*) Corresponding Author

Abstract


Sports facilities are the basis of sports activities such as athletic events such as volleyball, ball, tennis, and others. Each type of sports field requires advice and infrastructure to continue activities. The method used is Data Mining using the K-Means algorithm. This method of data is grouped into 2 clusters. The author uses data obtained from government sites that address http://bps.go.id. Based on recap result data from 2014 to 2018, The final results announced are based on sports fields, which are grouped into the lowest highest cluster based on the type of sport in each Kelurahan according to Indonesia's provinces. By using the K-Means method provides a grouping of an area in the Kelurahan, according to the Province in Indonesia. In this study, the government assisted in the sports field and improved facilities and infrastructure in sports for the athletic community.

Full Text:

PDF

References


M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering Dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi Dengan K-Means,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 311–319, 2018, doi: 10.30865/komik.v2i1.943.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer Dengan Metode K-Means (Study Kasus: Imunisasi Campak Pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 224–230, 2018, doi: 10.30865/komik.v2i1.930.

M. G. Sadewo, A. Eriza, A. P. Windarto, and D. Hartama, “Algoritma K-Means Dalam Mengelompokkan Desa / Kelurahan Menurut Keberadaan Keluarga Pengguna Listrik dan Sumber Penerangan Jalan Utama Berdasarkan Provinsi,” Semin. Nas. Teknol. Komput. Sains SAINTEKS 2019, pp. 754–761, 2019.

A. P. Windarto et al., “Analysis of the K-Means Algorithm on Clean Water Customers Based on the Province,” J. Phys. Conf. Ser., vol. 1255, no. 1, 2019, doi: 10.1088/1742-6596/1255/1/012001.

N. Rofiqo, A. P. Windarto, and D. Hartama, “Penerapan Clustering Pada Penduduk Yang Mempunyai Keluhan Kesehatan Dengan Datamining K-Means,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 216–223, 2018, doi: 10.30865/komik.v2i1.929.

M. A. W. K. MURTI, “Penerapan metode K-means clustering untuk mengelompokan potensi produksi buah – buahan di provinsi daerah istimewa yogyakarta,” 2017.

T. Taslim and F. Fajrizal, “Penerapan algorithma k-mean untuk clustering data obat pada puskesmas rumbai,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 7, no. 2, pp. 108–114, 2016, doi: 10.31849/digitalzone.v7i2.602.

P. Sari, B. Pramono, and L. ode H. S. Sagala, “Improve K-Means Terhadap Status Nilai Gizi Pada Balita,” semanTIK, vol. 3, no. 1, pp. 143–148, 2017, doi: 10.1063/1.2957900.

Y. Darmi and A. Setiawan, “Penerapan Metode Clustering K-Means Dalam,” Y. Darmi, A. Setiawan, vol. 12, no. 2, pp. 148–157, 2016.




DOI: https://doi.org/10.30645/kesatria.v1i4.36

DOI (PDF): https://doi.org/10.30645/kesatria.v1i4.36.g36

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: