Perbandingan Tingkat Optimalisasi Metode K-Nearest Neighbor Dan Naïve Bayes Dalam Klasifikasi Kelayakan Alat Laboratorium Kimia

Sri Mulya(1*), Gunadi Widi Nurcahyo(2), Billy Hendrik(3),

(1) Universitas Putra Indonesia “YPTK”, Padang, Indonesia
(2) Universitas Putra Indonesia “YPTK”, Padang, Indonesia
(3) Universitas Putra Indonesia “YPTK”, Padang, Indonesia
(*) Corresponding Author

Abstract


Classification of the appropriateness of equipment in the laboratory is needed by university management to determine future laboratory development steps. The suitability of laboratory equipment can be influenced by various factors, so it is necessary to know which variables are crucial in influencing the condition of the laboratory equipment's suitability. Data mining techniques can be used to explore new knowledge so that it can produce appropriate laboratory equipment. Some algorithms that can be used are K-Nearest Neighbord and Naive Bayes. The aim of this research is to compare the level of optimization of two methods in classifying the suitability of Chemistry laboratory equipment at FMIPA Unand using the K-Nearest Neighbor and Naive Bayes methods. The attributes used are year of procurement, level of use, level of damage, length of use of the tool, and condition of tool accessories. The data used is Materials Chemistry laboratory equipment, FMIPA, Andalas University from 2010-2023 with a total of 105 data. The research results show that the accuracy level of the Naive Bayes Method is better than the K-Nearest Neighbor Method. This is proven by the results of the Rapidminer test, which obtained the highest accuracy of 94.74% at a total testing data of 30% of the total data, while for the K-Nearest Neighbor method, the highest accuracy was obtained at 79.03% at a total testing data of 50% of the total data. It is hoped that the results of the tool classification can serve as guidance and evaluation to support the development of the FMIPA Chemistry laboratory at Andalas University

Full Text:

PDF

References


S. Umam and F. Wahyu Christanto, “Algoritma C4.5 Pada Sistem Analisis Data Untuk Klasifikasi Nasabah Sebagai Dasar Promosi Penjualan Produk Asuransi,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 1, pp. 875–884, 2023, [Online]. Available: http://jurnal.mdp.ac.id

A. Purwanto and H. W. Nugroho, “Analisa Perbandingan Kinerja Algoritma C4.5 Dan Algoritma K-Nearest Neighbors Untuk Klasifikasi Penerima Beasiswa,” J. Teknoinfo, vol. 17, no. 1, p. 236, 2023, doi: 10.33365/jti.v17i1.2370.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

P. D. Rinanda, B. Delvika, S. Nurhidayarnis, N. Abror, and A. Hidayat, “Perbandingan Klasifikasi Antara Naive Bayes dan K-Nearest Neighbor Terhadap Resiko Diabetes pada Ibu Hamil,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 68–75, 2022, doi: 10.57152/malcom.v2i2.432.

Nurhidayat, S. Defit, and Sumijan, “Data Mining dalam Akurasi Tingkat Kelayakan Pakai terhadap Peralatan Perangkat Keras,” J. Inf. dan Teknol., vol. 2, pp. 83–88, 2020, doi: 10.37034/jidt.v2i3.67.

H. Juliansa, S. Defit, and S. Sumijan, “Identifikaasi Tingkat Kerusakan Peralatan Laboratorium Komputer Menggunakan Metode Rough Set,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 410–415, 2018, doi: 10.29207/resti.v2i1.274.

S. Kasus et al., “Penerapan Data Mining Metode K-Nearest Neighbor Untuk Memprediksi Kelulusan Siswa Sekolah Menengah Pertama,” SMARTICS J., vol. 9, no. 1, pp. 14–19, 2023, [Online]. Available: https://doi.org/10.21067/smartics.v9i1.8088

T. Hardiani, “Comparison of Naive Bayes Method, K-NN (K-Nearest Neighbor) and Decision Tree for Predicting the Graduation of ‘Aisyiyah University Students of Yogyakarta,” Int. J. Heal. Sci. Technol., vol. 2, no. 1, pp. 75–85, 2021, doi: 10.31101/ijhst.v2i1.1829.

Munarsih and B. A. Ningsi, “Performance Comparison of Data Mining Classification Algorithms on Student Academic Achievement Prediction,” Indones. J. Artif. Intell. Data Min., vol. 6, no. 1, pp. 29–39, 2023.

Y. I. Kurniawan, “Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 455–464, 2018, doi: 10.25126/jtiik.201854803.

E. I. Siburian, G. Ginting, and R. D. Sianturi, “Penerapan Algoritma C4.5 Untuk Prediksi Kelayakan Pemakaian Alat Laboratorium Komputer,” Maj. Ilm. INTI, vol. 13, no. September, pp. 256–262, 2018.

T. T. Muryono, A. Taufik, and I. Irwansyah, “Perbandingan Algoritma K-Nearest Neighbor, Decision Tree, Dan Naive Bayes Untuk Menentukan Kelayakan Pemberian Kredit,” Infotech J. Technol. Inf., vol. 7, no. 1, pp. 35–40, 2021, doi: 10.37365/jti.v7i1.104.

E. Elisa, “Analisa dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Mengidentifikasi Faktor-Faktor Penyebab Kecelakaan Kerja Kontruksi PT.Arupadhatu Adisesanti,” J. Online Inform., vol. 2, no. 1, p. 36, 2017, doi: 10.15575/join.v2i1.71.

R. I. Salam and S. Defit, “Penentuan Tingkat Kerusakan Peralatan Labor Komputer Menggunakan Data Mining Rough Set,” J. Sistim Inf. dan Teknol., vol. 1, pp. 36–41, 2019, doi: 10.37034/jsisfotek.v1i4.7.

D. P. Sukma, S. Defit, and G. W. Nurcahyo, “Identifikasi Tingkat Kerusakan Peralatan Labor Teknik Komputer Jaringan Menggunakan Metode Decision Tree,” J. Sistim Inf. dan Teknol., vol. 3, pp. 275–280, 2021, doi: 10.37034/jsisfotek.v3i4.78.

A. Tejawati, A. Septiarini, R. Rismawati, and N. Puspitasari, “Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Klasifikasi Konten Berita,” J. Tek. Inform., vol. 4, no. 2, pp. 401–412, 2023.

I. dan A. Mutiara, “Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4,” Klik - Kumpul. J. Ilmu Komput., vol. 2, no. 2, pp. 159–173, 2015.

S. Wiyono, D. S. Wibowo, M. F. Hidayatullah, and D. Dairoh, “Comparative Study of KNN, SVM and Decision Tree Algorithm for Student’s Performance Prediction,” Int. J. Comput. Sci. Appl. Math., vol. 6, no. 2, p. 50, 2020, doi: 10.12962/j24775401.v6i2.4360.

A. Damayunita, R. S. Fuadi, and C. Juliane, “Comparative Analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) Algorithms for Classification of Heart Disease Patients,” J. Online Inform., vol. 7, no. 2, pp. 219–225, 2022, doi: 10.15575/join.v7i2.919.

M. E. Febrian, F. X. Ferdinan, G. P. Sendani, K. M. Suryanigrum, and R. Yunanda, “Diabetes prediction using supervised machine learning,” Procedia Comput. Sci., vol. 216, no. 2022, pp. 21–30, 2022, doi: 10.1016/j.procs.2022.12.107.




DOI: https://doi.org/10.30645/kesatria.v5i2.357

DOI (PDF): https://doi.org/10.30645/kesatria.v5i2.357.g354

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: