Klasifikasi Usia Berdasarkan Suara Dengan Ekstraksi Ciri Mel Frequency Cepstral Coefficients Menggunakan Support Vector Machine
(1) Universitas Islan Negeri Syarif Hidayatullah Jakarta, Indonesia
(2) Universitas Islan Negeri Syarif Hidayatullah Jakarta, Indonesia
(3) Universitas Islan Negeri Syarif Hidayatullah Jakarta, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Mirza Ardiana, Titon Dutono, and Tri Budi Santoso, “Identifikasi Jenis Kelamin Secara Real Time Berdasarkan Suara Pada Raspberry Pi,” J. Politek. Caltex Riau, vol. 8, no. 1, (2022), pp. 158–167.
M.Tri Satria Jaya, Diyah Puspitaningrum, and Boko Susilo, “Penerapan Speech Recognition Pada Permainan Teka-Teki Silang Menggunakan Metode Hidden Markov Model (HMM) Berbasis Desktop,” J. Rekursif, vol. 4, no. 1, (2016), pp. 119–129.
A. Abdillah Alwi, P. Pandu Adikara, and Indriati, “Pengenalan Jenis Kelamin dan Rentang Umur berdasarkan Suara menggunakan Metode Backpropagation Neural Network,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 4, no. 7, (2020), pp. 2083–2093.
N. Kumar Goel, M. Sarma, T. Singh Kushwah, D. Kumar Agrawal, Z. Iqbal, and S. Chauhan, “Extracting speaker’s gender, accent, age and emotional state from speech,” Interspeech,(2018), pp. 2384–2385, doi: 10.1088/1742-6596/1410/1/012073.
Heriyanto, S. Hartati, and A. Eko Putra, “Ekstraksi Ciri Mel Frequency Cepstral Coefficient ( MFCC ) dan Rerata Coefficient Untuk Pengecekan Bacaan Al- Qur ’an,” Telematika, vol. 15, (2018), pp. 99–108.
A. Abdulsatar, V. Davydov, V. Yushkova, A. Glinushkin, and V. Rud, “Age and gender recognition from speech signals,” J. Phys. Conf. Ser., vol. 1, (2019), doi: 10.1088/1742-6596/1410/1/012073.
D. Katerenchuk, “Age Group Classification with Speech and Metadata Multimodality Fusion,” Aclanthology.org, (2017), pp. 188–193.
Teguh Puji Laksono, Speech To Text Untuk Bahasa Indonesia, (2018).
D. Putra and A. Resmawan, “Verifikasi Biometrika Suara Menggunakan Metode MFCC Dan DTW,” LONTAR Komput., vol. 2, no. 1, (2011), pp. 8–21.
Totok Chamidy, “Metode Mel Frequency Cepstral Coeffisients (MFCC) Pada klasifikasi Hidden Markov Model (HMM) Untuk Kata Arabic pada Penutur Indonesia,” J. MATICS, vol. 8, no. 1, (2016), pp. 36–39, , doi: 10.18860/mat.v8i1.3482.
Angga Setiawan, Achmad Hidayatno, and R. Rizal Isnanto, “Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients (MFCC) Melalui Jaringan Syaraf Tiruan (JST) Learning Vector Quantization (LVQ) untuk Mengoperasikan Kursor Komputer,” TRANSMISI, vol. 13, no. 3, (2011), pp. 80–86,.
Torkis Nasution, “Metoda Mel Frequency Cepstrum Coefficients (MFCC) untuk Mengenali Ucapan pada Bahasa Indonesia,” J. Sains Dan Teknol. Inf., vol. 1, no. 1, (2012), pp. 22–31, doi: https://doi.org/10.33372/stn.v1i1.309.
P. Singh, R. Srivastava, K. P. S. Rana, and V. Kumar, “A multimodal hierarchical approach to speech emotion recognition from audio and text,” Knowl.-Based Syst., vol. 229,(2021).[Online]. Available:https://www.sciencedirect.com/science/article/abs/pii/S0950705121005785
A. Rahman Fauzi, Simulasi Control Smart Home Berbasis Mel Frequency Cepstral Coefficient Menggunakan Metode Support Vector Machine (SVM). UIN Sunan Ampel, (2020).[Online].Available: http://digilib.uinsa.ac.id/43041/2/Arif%20Rahman%20Fauzi_H06216003.pdf
Ryan Rifkin and Aldebaro Klautau, “In Defense of One-Vs-All Classification,” J. Mach. Learn. Res., vol. 5, (2004), pp. 101–141.
Renaldy Irfan, Analisis Perbandingan Algoritma K-nearest Neighbor Dengan Algoritma Support Vector Machine Pada Pengklasifikasia. (2012). [Online]. Available: https://repository.uinjkt.ac.id/dspace/bitstream/123456789/55999/1/RENALDY%20IRFAN-FST.pdf
I. Syarif, A. Prugel-Bennett, and G. Wills, “SVM Parameter Optimization Using Grid Search and Genetic Algorithm to Improve Classification Performance,” TELKOMNIKA, vol. 14, no. 4, (2016), pp. 1502-1509. doi : 10.12928/TELKOMNIKA.v14i4.3956.
DOI: https://doi.org/10.30645/kesatria.v4i4.240
DOI (PDF): https://doi.org/10.30645/kesatria.v4i4.240.g238
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: