Analisis Pola Penjualan Obat di Apotek Srikandi Menggunakan Algoritma Supervised Learning

Fienda Altamevia(1*), Harma Oktafia Lingga Wijaya(2), E Elmayati(3),

(1) Universitas Bina Insan, Indonesia
(2) Universitas Bina Insan, Indonesia
(3) Universitas Bina Insan, Indonesia
(*) Corresponding Author

Abstract


Along with the increasing world of the pharmaceutical industry, product information becomes input for companies. One of them is drug sales information and drug supply information. Information on how much drug supply is very important because this is related to how many sales will occur or the target market will be achieved in a certain period of time. The sales pattern is an activity to find out how consumers buy products with reference to maintaining the stability of stocks in increasing sales. The author helps the pharmacists of Srikandi Pharmacy to look for forecasting results in the future period by using the Supervised Learning Algorithm to perform calculations using the Support Vector Machine method as a method for calculating classification and prediction processes with high-dimensional space features. There are 344 data which are divided into two categories namely High and Low which can be seen from the pattern of sales. Before looking for prediction results here, we determine the best kernel to look for a high accuracy value to get optimal calculation results. Calculation test results using SVM get an accuracy of 99.2% with Polynomial kernels and C = 1.00, λ = 0.10, g = 000.1, d = 3.0.

Full Text:

PDF

References


A. Bode, “Support Vector Machine Menggunakan Forward Selection untuk Prediksi Penjualan Obat,” Tecnoscienza, vol. 3, pp. 16–26, 2018.

H. O. L. Wijaya, A. A. T. S, A. Armanto, and W. M. Sari, “Prediksi Pola Penjualan Barang pada umkm xyz dengan Metode Algoritma Apriori,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 432, 2022, doi: 10.30865/json.v3i4.4200.

M. Raehanun, “Analisis Support Vector Machine (SVM) Dalam Prediksi Permintaan Emas Perhiasan (Studi Kasus: Permintaan Emas Perhiasan dari Beberapa Negara Tertentu Periode Tahun 2000-2021),” vol. 1, pp. 105–112, 2019.

L. M. Ginting, M. M. T. Sigiro, E. D. Manurung, J. Jasa, and P. Sinurat, “Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression Untuk Memprediksi Stok Obat,” vol. 1, no. 2, 2021.

A. Wirasto and K. Nisa, “Komparasi Algoritma Machine Learning Untuk Klasifikasi Kelompok Obat Comparison of Machine Learning Algorithms for Classification of Drug Groups,” vol. 11, no. 2, pp. 196–207, 2021.

I. Colanus, R. Drajana, and A. Bode, “Support Vector Machine Untuk Prediksi Produksi Tanaman Pangan di Provinsi Gorontalo,” J. NOE, vol. 4, no. 2, pp. 3–10, 2021.

W. Agustina, M. T. Furqon, and B. Rahayudi, “Implementasi Metode Support Vector Machine (SVM) Untuk Klasifikasi Rumah Layak Huni (Studi Kasus: Desa Kidal Kecamatan Tumpang Kabupaten Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. Vol. 2 No., no. 10, pp. 3366–3372, 2018.

N. Nafi’iyah, “Algoritma SVM untuk Memprediksi Pengunjung Wisata Musium di Jakarta,” KERNEL J. Ris. Inov. Bid. Inform. dan Pendidik. Inform., vol. 1, no. 1, pp. 33–41, 2020, doi: 10.31284/j.kernel.2020.v1i1.1156.

S. Widaningsih, “Penerapan Data Mining untuk Memprediksi Siswa Berprestasi dengan Menggunakan Algoritma K Nearest Neighbor,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2598–2611, 2022, doi: 10.35957/jatisi.v9i3.859.

A. Sentiya, H. Suroyo, F. I. Komputer, and U. B. Darma, “Bina Darma Conference on Computer Science analisis text clustering akun fanpage shopee indonesia dengan Bina Darma Conference on Computer Science,” pp. 1055–1067.

F. R. Lumbanraja, R. S. Sani, D. Kurniawan, and A. R. Irawati, “Implementasi Metode Support Vector Machine Dalam Prediksi Persebaran Demam Berdarah Di Kota Bandar Lampung,” J. Komputasi, vol. 7, no. 2, 2019, doi: 10.23960/komputasi.v7i2.2426.

I. A. Magriza, “analisis penerapan algoritma pada,” vol. 2, no. 5, pp. 1–9, 2022.

F. Fatkhuroji, S. Santosa, and R. A. Pramunendar, “Prediksi Harga Kedelai Lokal Dan Kedelai Impor Dengan Metode Support Vector Machine Berbasis Forward Selection,” J. Teknol. Inf., vol. 15, no. 1, pp. 61–76, 2019, [Online]. Available: http://research.

A. Ishaq, L. A. Utami, and S. Mariana, “Analisa Pola Penjualan Obat Menggunakan Algoritma Apriori Pada Apotek Zam-Zam Bogor,” vol. 08, no. 1, pp. 13–23, 2019.

S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir,” pp. 202–207.

A. Pratama, R. C. Wihandika, and D. E. Ratnawati, “Implementasi algoritme support vector machine (SVM) untuk prediksi ketepatan waktu kelulusan mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. April, pp. 1704–1708, 2018.

H. Suroyo, “Penerapan Machine Learning dengan Aplikasi Orange Data Mining Untuk Menentukan Jenis Buah Mangga,” pp. 343–347, 2019.

“Detin Sofia,Pina Sekarpuji,Fahmi Fauziah,Agustina Merdeka Raya, " Analitik Big Data Untuk Peramalan Pemasaran Obat," J Instek, vol.4, no.2,2019.




DOI: https://doi.org/10.30645/kesatria.v4i1.127

DOI (PDF): https://doi.org/10.30645/kesatria.v4i1.127.g121

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: