Peningkatan Akurasi Deteksi Intrusi Jaringan dengan Model Hybrid Convolutional Neural Network dan Long Short-Term Memory
(1) Institut Teknologi dan Bisnis Asia Malang, Indonesia
(2) Institut Teknologi dan Bisnis Asia Malang, Indonesia
(3) Institut Teknologi dan Bisnis Asia Malang, Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
S. Indriani Lestariningati, “1. Definisi Keamanan Jaringan,” 2018.
F. S. Mukti, E. Setijadi, A. Affandi, A. Basuki, and M. A. Akbar, “In-Depth Network Traffic Analysis using Machine Learning Perspective: Characterization and Classification,” in 2023 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, 2023, pp. 415–421.
L. Ashiku and C. Dagli, “Network intrusion detection system using deep learning,” Procedia Comput Sci, vol. 185, pp. 239–247, 2021.
R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep learning approach for intelligent intrusion detection system,” IEEE access, vol. 7, pp. 41525–41550, 2019.
J. Lansky et al., “Deep learning-based intrusion detection systems: a systematic review,” IEEE Access, vol. 9, pp. 101574–101599, 2021.
L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, pp. 1–74, 2021.
P. Sun et al., “DL‐IDS: Extracting Features Using CNN‐LSTM Hybrid Network for Intrusion Detection System,” Security and communication networks, vol. 2020, no. 1, p. 8890306, 2020.
S. Nosouhian, F. Nosouhian, and A. K. Khoshouei, “A review of recurrent neural network architecture for sequence learning: Comparison between LSTM and GRU,” 2021.
D. A. Sulistyo, A. P. Wibawa, D. D. Prasetya, and F. A. Ahda, “LSTM-Based Machine Translation for Madurese-Indonesian,” Journal of Applied Data Sciences, vol. 4, no. 3, pp. 189–199, 2023.
A. Halbouni, T. S. Gunawan, M. H. Habaebi, M. Halbouni, M. Kartiwi, and R. Ahmad, “CNN-LSTM: hybrid deep neural network for network intrusion detection system,” IEEE Access, vol. 10, pp. 99837–99849, 2022.
N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set),” in 2015 military communications and information systems conference (MilCIS), IEEE, 2015, pp. 1–6.
“AndreiNC05/Intrusion_detection_based_on_artificial-_neural_network_approach: This is the implementation of the thesis for the Computer Science Master from the Technical University of Denmark (DTU).” Accessed: Jan. 21, 2025. [Online]. Available: https://github.com/AndreiNC05/Intrusion_detection_based_on_artificial-_neural_network_approach
“Classification: Accuracy, recall, precision, and related metrics | Machine Learning | Google for Developers.” Accessed: Jan. 21, 2025. [Online]. Available: https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-recall
“Apa Itu Akurasi, Precision, Recall & F1-Score, Rumus & Cara Menghitungnya.” Accessed: Jan. 21, 2025. [Online]. Available: https://haloryan.com/blog/apa-itu-akurasi-precision-recall-f1-score-rumus-cara-menghitungnya
DOI: http://dx.doi.org/10.30645/jurasik.v10i2.895
DOI (PDF): http://dx.doi.org/10.30645/jurasik.v10i2.895.g869
Refbacks
- There are currently no refbacks.
JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By: