Implementasi Naïve Bayes Pada Sistem Klasifikasi Kelayakan Alat Laboratorium Kimia

Sri Mulya(1*), Yulia Eka Putri(2), Firmanul Qadri Amir(3),

(1) 1*, 2, 2 1FMIPA Universitas Andalas, Indonesia 2UPT Lab. Sentral Universitas Andalas, Indonesia Email:
(2) 
(3) 
(*) Corresponding Author

Abstract


The feasibility of laboratory equipment is a crucial factor in ensuring the quality and safety of practical and research activities. At the Faculty of Mathematics and Natural Sciences, Universitas Andalas, the classification of equipment feasibility is still performed manually, leading to inefficiencies and potential assessment errors. This study aims to develop and implement a web-based information system for classifying the feasibility of laboratory equipment using the Naïve Bayes algorithm. The research applies a system development approach following the Waterfall model, starting with requirement analysis, system modeling using Context Diagram, DFD, and ERD, and implementation using PHP and MySQL. The Naïve Bayes algorithm calculates the probability of each feasibility class based on attributes such as procurement year, usage level, damage condition, usage duration, and accessory status. Test results indicate that the system successfully classifies equipment into three categories serviceable, needs repair, and unserviceable with 95% acceptable accuracy. The system generates report-based outputs that support strategic decision-making in equipment maintenance and procurement planning. Thus, this information system is expected to enhance the efficiency and objectivity of laboratory asset management through a data-driven and measurable digital platform.

Full Text:

PDF

References


N. M. Harahap, “Pengembangan Sistem Informasi Manajemen,” 2015.

T. T. Muryono, A. Taufik, and I. Irwansyah, “Perbandingan Algoritma K-Nearest Neighbor, Decision Tree, Dan Naïve Bayes Untuk Menentukan Kelayakan Pemberian Kredit,” Infotech J. Technol. Inf., vol. 7, no. 1, pp. 35–40, 2021, doi: 10.37365/jti.v7i1.104.

E. Elisa, “Analisa dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Mengidentifikasi Faktor-Faktor Penyebab Kecelakaan Kerja Kontruksi PT.Arupadhatu Adisesanti,” J. Online Inform., vol. 2, no. 1, p. 36, 2017, doi: 10.15575/join.v2i1.71.

O. Peretz, M. Koren, and O. Koren, “Naïve Bayes classifier – An ensemble procedure for recall and precision enrichment,” Eng. Appl. Artif. Intell., vol. 136, no. PB, p. 108972, 2024, doi: 10.1016/j.engappai.2024.108972.

J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and Techniques. 2011. doi: 10.1016/C2009-0-61819-5.

S. Nur, A. Pandu, and Y. Primasari, “Penerapan Naïve Bayes pada Sistem Pakar Pendeteksi Jaringan Internet di Rosi Cell . Net,” vol. 6, no. 2, 2024.

N. Nurdin, M. Suhendri, Y. Afrilia, and R. Rizal, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naïve Bayes Classifier (NBC),” Sistemasi, vol. 10, no. 2, p. 268, 2021, doi: 10.32520/stmsi.v10i2.1193.

S. Solekhan, M. Dahlan, A. Susanto, B. Cahyo Wibowo, and V. Indira Asri, “Rancang Bangun Sistem Informasi Inventarisasi dan Peminjaman Peralatan Laboratorium,” J. Teknol., vol. 16, no. 2, pp. 111–119, 2023, doi: 10.34151/jurtek.v16i2.4542.

R. Prasetya, A. L. Hananto, and E. Novalia, “Penerapan Algoritma Naïve Bayes untuk Perbandingan Sentimen Ulasan Lazada dan Tokopedia”.

I. Pendahuluan, “Penerapan Naïve Bayes Untuk Memprediksi Kelulusan Mahasiswa Rekayasa Perangkat Lunak Politeknik Negeri Bengkalis,” vol. 8, pp. 838–848, 2024.

S. Mulya, G. W. Nurcahyo, and B. Hendrik, “Perbandingan Tingkat Optimalisasi Metode K-Nearest Neighbor Dan Naïve Bayes Dalam Klasifikasi Kelayakan Alat Laboratorium Kimia,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 5, no. 2, pp. 483–495, 2024.

M. Muhasshanah and S. Qamariyah, “Implementasi Sistem Informasi Manajemen Laboratorium Kebidanan Pada Fakultas Ilmu Kesehatan Universitas Ibrahimy,” J. Ilm. Inform., vol. 6, no. 2, pp. 81–92, 2021, doi: 10.35316/jimi.v6i2.1234.

C. A. Sugianto and F. R. Maulana, “Algoritma Naïve Bayes Untuk Klasifikasi Penerima Bantuan Pangan Non Tunai ( Studi Kasus Kelurahan Utama ),” Techno.Com, vol. 18, no. 4, pp. 321–331, 2019, doi: 10.33633/tc.v18i4.2587.

R. Bangun, S. Pendataan, M. Dan, R. Nilai, E. I. Fenetiruma, and J. Lahallo, “Designing Web-based Application of Students Identity , Value Recap , and Attendance of Practice Activities in STIMIK Sepuluh Nopember Jayapura,” vol. 13, no. 2, pp. 1–8, 2023.

A. Mahfuliyanto, “Sistem Informasi Peminjaman Alat Di Laboratorium Otomasi Dan Robotik Fakultas Teknik Universitas Sebelas Maret Surakarta,” Indones. J. Inf. Technol. Comput., vol. 2, no. 1, pp. 43–54, 2022, doi: 10.52187/img.v2i1.25.

Niska Ramadani, Dzaky Faisahalariq, Khalid Alrijali, and Fadlul Amdhi Yul, “Rancang Bangun Sistem Informasi Penjadwalan dan Pemakaian Laboratorium Komputer Berbasis Web Pada Poltekkes Kemenkes Provinsi Bengkulu,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 15, no. 1, pp. 30–35, 2023, doi: 10.35891/explorit.v15i1.3847.

V. Nakhipova et al., “Use of the Naïve Bayes Classifier Algorithm in Machine Learning for Student Performance Prediction,” Int. J. Inf. Educ. Technol., vol. 14, no. 1, pp. 92–98, 2024, doi: 10.18178/ijiet.2024.14.1.2028.

R. Blanquero, E. Carrizosa, P. Ramírez-Cobo, and M. R. Sillero-Denamiel, “Variable selection for Naïve Bayes classification,” Comput. Oper. Res., vol. 135, p. 105456, 2021, doi: 10.1016/j.cor.2021.105456.

S. S. Prasetiyowati and Y. Sibaroni, “Unlocking the potential of Naïve Bayes for spatio temporal classification: a novel approach to feature expansion,” J. Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-024-00958-x.




DOI: http://dx.doi.org/10.30645/jurasik.v10i2.891

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v10i2.891.g865

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats