Penerapan Algoritma K-Means Dalam Mengelompokkan Rata-Rata Konsumsi Kalori Menurut Provinsi

Juwitha Lovely Sweets Sinaga(1*), S Solikhun(2), Dedi Suhendro(3),

(1) Mahasiswa Program Studi Sistem Informasi, STIKOM Tunas Bangsa, Pematangsiantar
(2) AMIK Tunas Bangsa, Pematangsiantar
(3) AMIK Tunas Bangsa, Pematangsiantar
(*) Corresponding Author

Abstract


Calories are a source of energy that we get from food intake that contains nutrients and as a basic human need for humans to survive. The number of people who consume excessive calories and do not pay attention to the amount of calorie intake that is consumed will result in the emergence of various diseases that are bad for health. In this case the government does not have information about the data on the average calorie consumption per province by province. The purpose of this study is to determine the highest and lowest clusters, for that the authors use Data Mining with the K-Means Algorithm to classify Average Calorie Consumption per day by province. This test is carried out using RapidMiner software. The results were obtained from the average grouping of calorie consumption grouped by two clusters: high and low clusters, high clusters of 13 provinces and low clusters of 21 provinces. Provinces that are classified as low clusters are expected to be a contribution for the Indonesian government for decision making in an effort to maintain a balanced consumption of calories per day and create a healthy lifestyle program in the future.

Full Text:

PDF

References


I. E. A. Novita And Hernawan Sulistyanto, “Pengembangan Aplikasi Untuk Mengetahui Kebutuhan Jumlah Kalori,” 2015.

M. W. Lestari Dwi Asih, “Meminimumkan Jumlah Kalori Di Dalam Tubuh Dengan Memperhitungkan Asupan Makanan Dan Aktivitas Menggunakan Linear Programming,” Vol. 16, No. 1, Pp. 38–44, 2016.

M. G. Sadewo, A. P. Windarto, And S. R. Andani, “Pemanfaatan Algoritma Clushtering Dalam Mengelompokkan Jumlah Desa / Kelurahan Yang Memiliki Sarana Kesehatan,” Vol. I, Pp. 124–131, 2017.

S. R. Ningsih, I. S. Damanik, A. P. Windarto, H. S. Tambunan, J. Jalaluddin, And A. Wanto, “Analisis K-Medoids Dalam Pengelompokkan Penduduk Buta Huruf Menurut Provinsi,” Pros. Semin. Nas. Ris. Inf. Sci., Vol. 1, No. September, P. 721, 2019, Doi: 10.30645/Senaris.V1i0.78.

S. Haryati, A. Sudarsono, And E. Suryana, “Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu),” Vol. 11, No. 2, Pp. 130–138, 2015.

R. D. Kusumah Et Al., “Perbandingan Metode K – Means Dan Self Organizing Map (Studi Kasus: Pengelompokan Kabupaten/Kota Di Jawa Tengah Berdasarkan Indikator Indeks Pembangunan Manusia 2015),” Vol. 6, Pp. 429–437, 2017.

Gusti Ngurah Wisnu Paramartha, Dian Eka Ratnawati, And A. W. Widodo, “Analisis Perbandingan Metode K-Means Dengan Improved Semi-Supervised Analisis Perbandingan Metode K-Means Dengan Improved Semi- Supervised K-Means Pada Data Indeks Pembangunan Manusia ( Ipm ),” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. Vol. 1, No. January, Pp. 813–824, 2017.




DOI: http://dx.doi.org/10.30645/jurasik.v6i1.272

DOI (PDF): http://dx.doi.org/10.30645/jurasik.v6i1.272.g251

Refbacks

  • There are currently no refbacks.



JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan : View My Stats