Analisis Sentimen Pada Media Sosial Twitter Menggunakan Naive Bayes Classifier Dengan Ekstrasi Fitur N-Gram
(1) Sekolah Tinggi Teknologi Pelita Bangsa, Cikarang Pusat
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno and J. Caro, "Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning," IISA 2013, Piraeus, 2013, pp. 1-6.
Kotwal, Aishwarya et al, 2016, Improvement in Sentiment Analysis of Twitter Data using Hadoop, International Conference on “Computing for Sustainable Global Development”, 16th – 18th March, 2016, BVICAM, New Delhi (INDIA).
Medhat, Walaa, Hassan, Ahmed, & Korashy, Hoda, 2014, Sentiment Analysis Algorithms And Applications: A Survey, Ain Shams Engineering Journal (2014) 5, 1093–1113.
Feldman, R and Sanger, J. 2007. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press:NewYork.
Afuan, L. (2013). Stemming Dokumen Teks Bahasa Indonesia. Jurnal Telematika, Vol. 6, No. 2, Hal. 34–40
Nurfalah, A., & Adiwijaya, A. A. S. (2017). Analisis Sentimen Berbahasa Indonesia dengan Pendekatan Lexicon-Based pada Media Sosial. Jurnal Masyarakat Informatika Indonesia, 2(1), 1-8.
Sadida, Rizqon dkk, 2017, Perancangan Sistem Analisis Sentimen Masyarakat Pada Sosial Media Dan Portal Berita, Seminar Nasional Teknologi Informasi dan Multimedia 2017 STMIK AMIKOM Yogyakarta, 4 Februari 2017.
Kusrini dan Luthfi, Emha Taufiq, 2010, Algoritma Data Mining, Penerbit Andi: Yogyakarta
Han, Jiawei, Kamber, Micheline and Pei, Jian, 2012, Data Mining Concepts and Techniques Third Edition, Morgan Kaufmann Publishers is an imprint of Elsevier. 225 Wyman Street, Waltham, MA 02451, USA, ISBN 978-0-12-381479-1.
DOI: http://dx.doi.org/10.30645/j-sakti.v2i2.83
Refbacks
- There are currently no refbacks.
J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:
Jumlah Kunjungan :