Sistem Rekomendasi Collaborative Filtering Sebagai Upaya Peningkatan Perekonomian di Pasar Tradisional

Herbert A. Tambunan(1*), Jimmi Hendrik Pangihutan Sitorus(2),

(1) AMIK Parbina Nusantara, Pematang Siantar, Indonesia
(2) AMIK Parbina Nusantara, Pematang Siantar, Indonesia
(*) Corresponding Author

Abstract


Traditional markets face significant challenges from the growth of modern markets and e-commerce, which can lead to reduced attractiveness, loss of competitiveness and decreased sales. Traditional markets have a key role in economic, social and cultural sustainability. Therefore, the preservation and transformation of this market is very important to support the economy, promote local products and maintain cultural heritage. This research aims to improve the economy of traditional markets by implementing collaborative filtering technology, which makes it easier for consumers to find the desired products. The Horas Market in Pematang Siantar City is the object of research. Collaborative filtering is a technique that uses user data to recommend products based on similarities to other users. The dataset includes the opinions of 2,114 consumers who purchased products from 10 kiosks, totalling 97 products and 5,948 product ratings. Test results using the RSME metric with 100 epochs show a value of 0.1832 on the training data and 0.1908 on the test data. These results show the suitability of the Matrix Factorization-based collaborative filtering method as an application recommendation system at the Horas Market. In the context of traditional markets, this technology can increase sales by recommending relevant products to customers, encouraging the economic growth of traditional markets. However, it is necessary to understand the long-term implications for local communities and the economy as the next step in this research.

Full Text:

PDF

References


T. M. Mokalu, H. Nayoan, and S. Sampe, “Peran Pemerintah Dalam Pemberdayaan Pasar Tradisional Guna Meningkatkan Kesejahteraan Masyarakat (Studi Kasus Di Pasar Langowan Timur Kecamatan Langowan Timur),” Jurnal Governance, vol. 1, no. 2, pp. 1–12, 2021, [Online]. Available: https://ejournal.unsrat.ac.id/index.php/governance/article/view/34847

Ariyanti Luhur Tri Setyarini, V. D. Purnomo, Syukron Abdul Kadir, and Benedictus Hestu Cipto Handoyo, “Analysis of Bantul Regency Regional Regulation Number 9 of 2021 Concerning People’s Market Management,” Formosa Journal of Multidisciplinary Research, vol. 2, no. 1, pp. 241–258, 2023, doi: 10.55927/fjmr.v2i1.2433.

G. Arifin, Y. H. Trinugraha, and N. Nurhadi, “Solidaritas dan Modal Sosial Pedagang Pasar Legi Surakarta Menghadapi Tantangan Pasar Modern,” Jurnal Sosiologi Andalas, vol. 7, no. 2, pp. 112–126, 2021, doi: 10.25077/jsa.7.2.112-126.2021.

M. N. Muzakki and K. HusnaAsri, “Strategi UMKM Bertahan Di Masa Pandemi,” ALIF, vol. 1, no. 2, pp. 63–71, 2022, doi: 10.37010/alif.v1i2.1021.

D. R. Effendi, R. Fermayani, A. S. Egim, and R. R. Harahap, “Pengaruh Persepsi Konsumen Mengenai Harga, Lokasi, Dan Kualitas Pasar Modern Terhadap Minat Beli Konsumen,” Jurnal Ecogen, vol. 4, no. 2, pp. 188–197, 2021, doi: 10.24036/jmpe.v4i2.11169.

A. Shomad, “Memproteksi Warung Kelontong Dari Ekspansi Minimarket Dan Revolusi Industri 4.0 (Analisis Peraturan Presiden No. 112 Tahun 2007 Tentang Penataan dan Pembinaan Pasar Tradisional, Pusat Perbelanjaan dan Toko Modern),” Jurnal Administrasi dan Kebijakan Publik, vol. 6, no. 1, pp. 113–132, 2021, doi: 10.25077/jakp.6.1.113-132.2021.

F. Wibowo, A. U. Khasanah, and F. I. F. S. Putra, “Analisis Dampak Kehadiran Pasar Modern terhadap Kinerja Pemasaran Pasar Tradisional Berbasis Perspektif Pedagang dan Konsumen di Kabupaten Wonogiri,” Benefit: Jurnal Manajemen dan Bisnis, vol. 7, no. 1, pp. 53–65, 2022, doi: 10.23917/benefit.v7i1.16057.

A. A. Wakhid, A. Qohar, and L. Faizal, “Model Kebijakan Pemerintah Daerah dalam Pengembangan Pasar Tradisional untuk Meningkatkan Daya Saing Terhadap Pasar Modern,” Jurnal Tapis: Teropong Aspirasi Politik Islam, vol. 18, no. 2, pp. 81–99, 2022, doi: 10.24042/tps.v18i2.14356.

V. A. Qurrata, R. G. Supratman, and R. B. Khuzaimah, “Strategi ketahanan pasar rakyat di masa pandemi covid-19,” Inovasi, vol. 18, no. 1, pp. 105–111, 2022, doi: 10.30872/jinv.v18i1.10365.

X. Xiao, J. Wen, W. Zhou, F. Luo, M. Gao, and J. Zeng, “Multi-interaction fusion collaborative filtering for social recommendation,” Expert Systems with Applications, vol. 205, p. 117610, 2022, doi: 10.1016/j.eswa.2022.117610.

O. Azeroual and T. Koltay, “RecSys Pertaining to Research Information with Collaborative Filtering Methods: Characteristics and Challenges,” Publications, vol. 10, no. 2, pp. 1–14, 2022, doi: 10.3390/publications10020017.

R. Wang, Z. Wu, J. Lou, and Y. Jiang, “Attention-based dynamic user modeling and Deep Collaborative filtering recommendation,” Expert Systems with Applications, vol. 188, p. 116036, 2022, doi: 10.1016/j.eswa.2021.116036.

Z. Cai, G. Yuan, S. Qiao, S. Qu, Y. Zhang, and R. Bing, “FG-CF: Friends-aware graph collaborative filtering for POI recommendation,” Neurocomputing, vol. 488, pp. 107–119, 2022, doi: 10.1016/j.neucom.2022.02.070.

N. Nassar, A. Jafar, and Y. Rahhal, “A novel deep multi-criteria collaborative filtering model for recommendation system,” Knowledge-Based Systems, vol. 187, p. 104811, 2020, doi: 10.1016/j.knosys.2019.06.019.

Y. Lv, Y. Zheng, F. Wei, C. Wang, and C. Wang, “AICF: Attention-based item collaborative filtering,” Advanced Engineering Informatics, vol. 44, no. February, p. 101090, 2020, doi: 10.1016/j.aei.2020.101090.

M. F. Aljunid and M. D. Huchaiah, “IntegrateCF: Integrating explicit and

implicit feedback based on deep learning collaborative filtering algorithm,” Expert Systems with Applications, vol. 207, no. June, p. 117933, 2022, doi: 10.1016/j.eswa.2022.117933.

L. C. Jiang, R. R. Liu, and C. X. Jia, “User-location distribution serves as a useful feature in item-based collaborative filtering,” Physica A: Statistical Mechanics and its Applications, vol. 586, p. 126491, 2022, doi: 10.1016/j.physa.2021.126491.

N. Ghasemi and S. Momtazi, “Neural text similarity of user reviews for improving collaborative filtering recommender systems,” Electronic Commerce Research and Applications, vol. 45, p. 101019, 2021, doi: 10.1016/j.elerap.2020.101019.

F. Nurhani and Samsudin, “Implementasi Algoritma Collaborative Filtering pada Sistem Pemesanan Makanan dan Minuman dengan Platform Android,” Jurnal Ilmiah Komputasi, vol. 21, no. 3, pp. 317–332, 2022, doi: 10.32409/jikstik.21.3.3110.

M. V. Anggoro and M. Izzatillah, “Sistem Rekomendasi Musik dengan Metode Collaborative Filtering Berbasis Android,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 7, no. 1, pp. 1–8, 2022, doi: 10.30998/string.v7i1.10300.

J. Moon, Y. Jeong, D. K. Chae, J. Choi, H. Shim, and J. Lee, “CoMix: Collaborative filtering with mixup for implicit datasets,” Information Sciences, vol. 628, pp. 254–268, 2023, doi: 10.1016/j.ins.2023.01.110.

R. J. Kuo and S. S. Li, “Applying particle swarm optimization algorithm-based collaborative filtering recommender system considering rating and review,” Applied Soft Computing, vol. 135, p. 110038, 2023, doi: 10.1016/j.asoc.2023.110038.

A. Godinot and F. Tarissan, “Measuring the effect of collaborative filtering on the diversity of users’ attention,” Applied Network Science, vol. 8, no. 1, pp. 1–18, 2023, doi: 10.1007/s41109-022-00530-7.

F. Fkih, “Enhancing item-based collaborative filtering by users’ similarities injection and low-quality data handling,” Data and Knowledge Engineering, vol. 144, p. 102126, 2023, doi: 10.1016/j.datak.2022.102126.

S. Poudel and M. Bikdash, “Closed-Form Models of Accuracy Loss due to Subsampling in SVD Collaborative Filtering,” Big Data Mining and Analytics, vol. 6, no. 1, pp. 72–84, 2023, doi: 10.26599/BDMA.2022.9020024.

J. Zhu, K. Li, J. Peng, and J. Qi, “Self-Supervised Graph Attention Collaborative Filtering for Recommendation,” Electronics (Switzerland), vol. 12, no. 4, pp. 1–17, 2023, doi: 10.3390/electronics12040793.

J. Wang, H. Mei, K. Li, X. Zhang, and X. Chen, “Collaborative Filtering Model of Graph Neural Network Based on Random Walk,” Applied Sciences (Switzerland), vol. 13, no. 3, pp. 1–17, 2023, doi: 10.3390/app13031786.

A. A. Patoulia, A. Kiourtis, A. Mavrogiorgou, and D. Kyriazis, “A Comparative Study of Collaborative Filtering in Product Recommendation,” Emerging Science Journal, vol. 7, no. 1, pp. 1–15, 2023, doi: 10.28991/ESJ-2023-07-01-01.

K. Liu, F. Xue, X. He, D. Guo, and R. Hong, “Joint Multi-Grained Popularity-Aware Graph Convolution Collaborative Filtering for Recommendation,” IEEE Transactions on Computational Social Systems, vol. 10, no. 1, pp. 72–83, 2023, doi: 10.1109/TCSS.2022.3151822.

J. Wang, Z. Chen, Y. Qin, D. He, and F. Lin, “Multi-Aspect co-Attentional Collaborative Filtering for extreme multi-label text classification,” Knowledge-Based Systems, vol. 260, p. 110110, 2023, doi: 10.1016/j.knosys.2022.110110.

E. Ahmed and A. Letta, “Book Recommendation Using Collaborative Filtering Algorithm,” Applied Computational Intelligence and Soft Computing, vol. 2023, no. Article ID 1514801, pp. 1–12, 2023, doi: 10.1155/2023/1514801.

X. Zhou, “Design of a Hybrid Recommendation Algorithm based on Multi-objective Collaborative Filtering for Massive Cloud Data,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 2, pp. 472–481, 2023, doi: 10.14569/IJACSA.2023.0140256.

H. Liu, L. Guo, P. Li, P. Zhao, and X. Wu, “Collaborative filtering with a deep adversarial and attention network for cross-domain recommendation,” Information Sciences, vol. 565, pp. 370–389, 2021, doi: 10.1016/j.ins.2021.02.009.




DOI: http://dx.doi.org/10.30645/j-sakti.v7i2.706

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats