Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes
(1) Sistem Informasi, Fakultas Teknologi Komunikasi dan Informasi, Universitas Nasional
(2) Sistem Informasi, Fakultas Teknologi Komunikasi dan Informasi, Universitas Nasional
(3) Sistem Informasi, Fakultas Teknologi Komunikasi dan Informasi, Universitas Nasional
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
A. Rasool, R. Tao, K. Marjan, and T. Naveed, “Twitter Sentiment Analysis : A Case Study for Apparel Brands Twitter Sentiment Analysis : A Case Study for Apparel Brands,” IOP Conf. Ser. J. Phys. Conf. Ser., 2019, doi: 10.1088/1742-6596/1176/2/022015.
A. M. Khattak et al., “Tweets classification and sentiment analysis for personalized tweets recommendation,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/8892552.
C. Bhagat and D. Mane, “Survey On Text Categorization Using Sentiment Analysis,” vol. 8, no. 08, 2019.
I. M. Noor and M. Turan, “Sentiment Analysis using Twitter Dataset,” IJID (International J. Informatics Dev., vol. 9, no. 2, pp. 84–94, 2020, doi: 10.14421/ijid.2019.08206.
A. Shelar and C. Y. Huang, “Sentiment analysis of twitter data,” Proc. - 2018 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2018, pp. 1301–1302, 2018, doi: 10.1109/CSCI46756.2018.00252.
S. Gohil, S. Vuik, and A. Darzi, “Sentiment analysis of health care tweets: Review of the methods used,” JMIR Public Heal. Surveill., vol. 20, no. 4, 2018, doi: 10.2196/publichealth.5789.
M. A. Kausar, A. Soosaimanickam, and M. Nasar, “Public Sentiment Analysis on Twitter Data during COVID-19 Outbreak,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 2, pp. 415–422, 2021, doi: 10.14569/IJACSA.2021.0120252.
V. A. and S. S. Sonawane, “Sentiment Analysis of Twitter Data: A Survey of Techniques,” Int. J. Comput. Appl., vol. 139, no. 11, pp. 5–15, 2016, doi: 10.5120/ijca2016908625.
M. Kiruthika, W. Sanjana, and P. Giri, “Sentiment Analysis of Twitter Data,” Int. J. Innov. Eng. Technol., vol. 6, no. 4, pp. 2319–1058, 2016, [Online]. Available: http://ijiet.com/wp-content/uploads/2016/04/37.pdf.
Y. N and M. S, “A Review on Text Mining in Data Mining,” Int. J. Soft Comput., vol. 7, no. 2/3, pp. 01–08, 2016, doi: 10.5121/ijsc.2016.7301.
K. B. Priya Iyer and S. Kumaresh, “Twitter sentiment analysis on coronavirus outbreak using machine learning algorithms,” Eur. J. Mol. Clin. Med., vol. 7, no. 3, pp. 2663–2676, 2020.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.
E. S. Negara, R. Andryani, and P. H. Saksono, “Analisis Data Twitter: Ekstraksi dan Analisis Data G eospasial,” J. INKOM, vol. 10, no. 1, p. 27, 2016, doi: 10.14203/j.inkom.433.
I. Saputra, J. A. Halomoan, A. B. Raharjo, C. Rezky, A. Syavira, and S. Informasi, “SENTIMENT ANALYSIS ON TWITTER OF PSBB EFFECT USING MACHINE,” pp. 143–150.
S. Afrizal, H. N. Irmanda, N. Falih, and I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap Kehadiran Mass Rapid Transit,” J. Inform., vol. 4221, pp. 157–168, 2019.
B. M. Pintoko and K. M. L., “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naive Bayes Classifier,” e-Proceeding Eng., vol. 5, no. 3, pp. 8121–8130, 2018.
N. Novalita, A. Herdiani, I. Lukmana, and D. Puspandari, “Cyberbullying identification on twitter using random forest classifier,” J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012029.
S. Goyal, “Review Paper on Sentiment Analysis of Twitter Data Using Text Mining and Hybrid Classification Approach,” Internatio nal J. Eng. Dev. Res., vol. 5, no. 2, pp. 2321–9939, 2017, [Online]. Available: http://www.ijedr.org/papers/IJEDR1702032.pdf.
R. H. Satrio and M. A. Fauzi, “Klasifikasi Tweets Pada Twitter Menggunakan Metode K-Nearest Neighbour ( K-NN ) Dengan Pembobotan TF-IDF,” vol. 3, no. 8, pp. 8293–8300, 2019.
M. Shoeb and J. Ahmed, “Sentiment Analysis and Classification of Tweets Using Data Mining,” Int. Res. J. Eng. Technol., vol. 4, no. 12, pp. 1471–1474, 2017, [Online]. Available: www.irjet.net.
DOI: http://dx.doi.org/10.30645/j-sakti.v5i2.365
Refbacks
- There are currently no refbacks.
J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:
Jumlah Kunjungan :