Sentiment Masyarakat Terhadap Virus COVID-19 Pada Instagram Menggunakan Algoritma Naïve Bayes Classifier

Ade Hendriani(1*), Susy Katarina Sianturi(2),

(1) Program Studi Manajemen Informatika, STTIKOM Insan Unggul, Cilegon, Indonesia
(2) Program Studi Sistem Informasi, STTIKOM Insan Unggul, Cilegon, Indonesia
(*) Corresponding Author

Abstract


Corona virus or commonly referred to as COVID-19 is a type of disease that is very contagious and its spread is very fast and terrible that has reached the entire world, its spread is taking place and Indonesia is one of the countries affected by it, this disease is not only terrorizing human visions and threatening very quickly and killing human and animal lives in a very significant time tens of millions of people have died because of it causing its own sentiment based on the opinions contained in Instagram, this research was conducted to determine the impact of the covid-19 virus outbreak on Indonesian society by conducting a classification process using the naïve Bayes classifier algorithm and the results of this study show the percentage in the level of seeing the accuracy of data testing so that it can be concluded that the use of this algorithm is very appropriate in the process of classifying a data.

Full Text:

PDF

References


L. Van Der Hoek et al., “Identification of a new human coronavirus,” Nat. Med., vol. 10, no. 4, pp. 368–373, 2004, doi: 10.1038/nm1024.

D. Benvenuto, M. Giovanetti, A. Ciccozzi, S. Spoto, S. Angeletti, and M. Ciccozzi, “The 2019-new coronavirus epidemic: Evidence for virus evolution,” J. Med. Virol., vol. 92, no. 4, pp. 455–459, 2020, doi: 10.1002/jmv.25688.

N. R. Yunus and A. Rezki, “Kebijakan Pemberlakuan Lock Down Sebagai Antisipasi Penyebaran Corona Virus Covid-19,” SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 3, 2020, doi: 10.15408/sjsbs.v7i3.15083.

Ratino, N. Hafidz, S. Anggraeni, and W. Gata, “Sentimen Analisis Informasi Covid-19 menggunakan Support Vector Machine dan Naïve Bayes,” J. JUPITER, vol. 12, no. 2, pp. 1–11, 2019.

M. A. Nurrohmat, “Aplikasi Pemrediksi Masa Studi dan Predikat Kelulusan Mahasiswa Informatika Universitas Muhammadiyah Surakarta Menggunakan Metode Naive Bayes,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 1, no. 1, p. 29, 2015, doi: 10.23917/khif.v1i1.1179.

D. Gunawan, “Evaluasi Performa Pemecahan Database dengan Metode Klasifikasi Pada Data Preprocessing Data mining,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 2, no. 1, p. 10, 2016, doi: 10.23917/khif.v2i1.1749.

W. B. Zulfikar and N. Lukman, “Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata,” J. Online Inform., vol. 1, no. 2, pp. 82–86, 2016, doi: 10.15575/join.v1i2.33.

M. I. Maulana and A. A. Soebroto, “Klasifikasi Tingkat Stres Berdasarkan Tweet pada Akun Twitter menggunakan Metode Improved k-Nearest Neighbor dan Seleksi Fitur Chi- square,” vol. 3, no. 7, pp. 6662–6669, 2019.

J. Kirana, K. P. Rajagukguk, E. Lailan, and S. Lubis, “ANALISIS DAMPAK COVID-19 PADA MASYARAKAT,” vol. 1, pp. 64–69, 2020.

N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020, doi: 10.30864/jsi.v15i1.332.

D. P. Utomo, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” vol. 4, no. April, pp. 437–444, 2020, doi: 10.30865/mib.v4i2.2080.

M. R. Islam, A. R. M. Kamal, N. Sultana, R. Islam, M. A. Moni, and A. Ulhaq, “Detecting Depression Using K-Nearest Neighbors (KNN) Classification Technique,” Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, no. February, pp. 1–4, 2018, doi: 10.1109/IC4ME2.2018.8465641.

W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and applications: A survey,” Ain Shams Eng. J., vol. 5, no. 4, pp. 1093–1113, 2014, doi: 10.1016/j.asej.2014.04.011.

N. Silalahi, “TIN : Terapan Informatika Nusantara Penentuan Strategi Promosi Universitas Budi Darma Menggunakan Algoritma K-Means Clustering TIN : Terapan Informatika Nusantara,” vol. 1, no. 1, pp. 40–46, 2020.

R. S. Harahap, “Komparasi Algoritma Klasifikasi Decision Tree, Naive Bayes Dan Neural Network Untuk Prediksi Penyakit Ginjal Kronis,” Konf. Nas. Ilmu Pengetah. dan Teknol., vol. 2, no. 1, pp. 239-INF.244, 2016, [Online]. Available: http://konferensi.nusamandiri.ac.id/prosiding/index.php/knit/article/view/129.

S. Defiyanti, “Integrasi Metode Clustering dan Klasifikasi untuk Data Numerik,” Citee, no. July, pp. 256–261, 2017.

E. Buulolo, Buku Data Mining Untuk Perguruan Tinggi, I. 2020.




DOI: http://dx.doi.org/10.30645/j-sakti.v5i1.336

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats