Deteksi Cyberbullying berdasarkan Unsur Perbuatan Pidana yang Dilanggar dengan Naive Bayes dan Support Vector Machine
(1) Program Studi Informatika Program Magister, Universitas Islam Indonesia
(2) Program Studi Informatika Program Magister, Universitas Islam Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
J. Wilson and N. Gapsiso, 2014, “Social Media and the Freedom of Expression in Nigeria : Posting the mind of a Nation,” Int. J. Internet Trolling Online Particip. Soc., vol. 1, no. 1, pp. 5–22.
J. A. Obar and A. Oeldorf-Hirsch, 2016, “The biggest lie on the internet: Ignoring the privacy policies and terms of service policies of social networking services.”
P. J. Larson, Safe And Sound : Social Media, 2nd ed. Huntington Beach, CA: Cracchiolo, Rachelle, 2017.
APJII, “Survei APJII: 49% Pengguna Internet Pernah Dirisak di Medsos,” 2019. [Online]. Available: https://databoks.katadata.co.id/datapublish/2019/05/16/survei-apjii-49-pengguna-internet-pernah-dirisak-di-medsos.
E. N. Putra, “Merunut Lemahnya Hukum Cyberbullying di Indonesia,” 2019. https://theconversation.com/merunut-lemahnya-hukum-cyberbullying-di-indonesia-110097.
N. Willard, 2007, “Effectively Managing Internet Use Risks in Schools,” Online, pp. 1–19.
S. Chadwick, 2014, “Impacts of Cyberbullying, Building Social and Emotional Resilience in Schools,” p. 89, doi: 10.1007/978-3-319-04031-8.
H. Rosa et al., 2019, “Automatic cyberbullying detection: A systematic review,” Comput. Human Behav., vol. 93, pp. 333–345, doi: 10.1016/j.chb.2018.12.021.
N. Abdulloh and A. Fathan, 2019, “Deteksi Cyberbullying pada Cuitan Media Sosial Twitter,” vol. 01.
B. Li, T. Liu, Z. Zhao, P. Wang, and X. Du, 2017, “Neural bag-of-ngrams,” 31st AAAI Conf. Artif. Intell. AAAI 2017, pp. 3067–3074.
A. Wang, “What Is Data Annotation?,” 2019. https://www.quora.com/What-is-data-annotation.
J. Brownlee, “8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset,” 2015. https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
(accessed Jul. 27, 2020).
D. Ramyachitra and P. Manikandan, 2014, “Imbalanced dataset classification and solutions: a review,” Int. J. Comput. Bus. Res., vol. 5, no. 4.
G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, 2004, “A study of the behavior of several methods for balancing machine learning training data,” ACM SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 20–29, doi: 10.1145/1007730.1007735.
S. Maldonado, J. López, and C. Vairetti, 2019, “An alternative SMOTE oversampling strategy for high-dimensional datasets,” Appl. Soft Comput. J., vol. 76, pp. 380–389, doi: 10.1016/j.asoc.2018.12.024.
D. Elreedy and A. F. Atiya, 2019, “A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance,” Inf. Sci. (Ny)., vol. 505, pp. 32–64, doi: 10.1016/j.ins.2019.07.070.
T. Hasanin and T. M. Khoshgoftaar, 2018, “The effects of random undersampling with simulated class imbalance for big data,” Proc. - 2018 IEEE 19th Int. Conf. Inf. Reuse Integr. Data Sci. IRI 2018, pp. 70–79, doi: 10.1109/IRI.2018.00018.
DOI: http://dx.doi.org/10.30645/j-sakti.v5i1.293
Refbacks
- There are currently no refbacks.
J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:
Jumlah Kunjungan :