Analisis Algoritma Datamining pada Kasus Daerah Pelaku Kejahatan Pencurian Berdasarkan Provinsi

Rinawati R(1*), Erene Gernaria Sihombing(2), Linda Sari Dewi(3), Ester Arisawati(4),

(1) STMIK Nusa Mandiri, Jakarta, Indonesia
(2) STMIK Nusa Mandiri, Jakarta, Indonesia
(3) STMIK Nusa Mandiri, Jakarta, Indonesia
(4) STMIK Nusa Mandiri, Jakarta, Indonesia
(*) Corresponding Author

Abstract


Theft is a behavior that causes harm to victims who are targeted and can cause victims. The level of theft behavior is increasing in each region due to the increasing number of unemployment and lazy nature of work that makes a person commit theft to make ends meet. The purpose of this study was to analyze using the technique of datamining in the area of perpetrators of theft crimes by province. The technique used is clustering with the K-means method. Data sourced from the Indonesian Central Statistics Agency with the url address: https://www.bps.go.id/. The results of the study using this technique are clustered in areas in Indonesia which have the highest crime theft rates. From the results of the study using the K-means technique, that there are 17 provinces out of 34 provinces that have the highest crime theft (C1) areas, namely: Aceh, North Sumatra, West Sumatra, Riau, Jambi, South Sumatra, Lampung, DKI Jakarta, West Java, Central Java, East Java, Banten, West Nusa Tenggara, East Nusa Tenggara, South Kalimantan, South Sulawesi, Papua. The results of the study are expected to be information for the government in conducting policies to reduce the crime crime rate in Indonesia which is very high (50%).

Full Text:

PDF

References


N. Wakhidah, “Clustering Menggunakan K-Means Algorithm ( K-Means Algorithm Clustering ),” Fak. Teknol. Inf., vol. 21, no. 1, pp. 70–80, 2014.

M. G. Sadewo, A. P. Windarto, and D. Hartama, “Penerapan Datamining Pada Populasi Daging Ayam Ras Pedaging Di Indonesia Berdasarkan Provinsi Menggunakan K-Means,” pp. 60–67, 2016.

Windha Mega Pradnya Dhuhita, “Clustering Menggunakan Metode K-Means untuk Menentukan Status Gizi Balita,” J. Inform., vol. 15, no. 2, pp. 160–174, 2016.

B. M. Metisen and H. L. Sari, “Analisis Clustering Menggunakan Metode K-Means dalam Pengelompokkan Penjualan Produk pada Swalayan Fadhila,” J. Media Infotama, vol. 11, no. 2, pp. 110–118, 2015.

L. Teori, “( K-Means Algorithm Implementation For Clustering Of Patients Disease In Kajen Clinic Of Pekalongan) Anindya Khrisna Wardhani Magister Sistem Informasi Universitas Diponegoro,” vol. 14, pp. 30–37, 2016.

S. Agustina, D. Yhudo, H. Santoso, N. Marnasusanto, A. Tirtana, and F. Khusnu, “Clustering Kualitas Beras Berdasarkan Ciri Fisik Menggunakan Metode K-Means Algoritma,” Clust. K-Means, pp. 1–7, 2012.

N. Hasanah, M. Ugiarto, and N. Puspitasari, “Sistem Pengelompokan Curah Hujan Menggunakan Metode K-Means Di Wilayah Kalimantan Timur,” in Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, 2017, vol. 2, no. 2, pp. 122–126.




DOI: http://dx.doi.org/10.30645/j-sakti.v4i1.189

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats