Analisis Laju Pembelajaran dalam Mengklasifikasi Data Wine Menggunakan Algoritma Backpropagation

Jaya Tata Hardinata(1*), Harly Okprana(2), Agus Perdana Windarto(3), Widodo Saputra(4),

(1) STIKOM Tunas Bangsa Pematangsiantar
(2) STIKOM Tunas Bangsa Pematangsiantar
(3) STIKOM Tunas Bangsa Pematangsiantar
(4) AMIK Tunas Bangsa Pematangsiantar
(*) Corresponding Author

Abstract


Backpropagation is an artificial neural network that has the architecture in conducting training and determining the right parameters to produce the correct output of similar but not the same input. One of the parameters that influences the determination of bacpropagation architecture is the rate of learning, where if the value of the learning rate is too high then the network architecture becomes unstable otherwise if the value of the learning rate is too low the network architecture converges and takes a long time in training network architecture. This research data is secondary data sourced from UCI Data Mechine Learning. The best network architecture in this study is 13-10-3, with different learning rates ranging from 0.01, 0.03, 0.06, 0.01, 0.13, 0.16, 0.2, 0.23, 0.026, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9. From the 21 different learning rate values in the 13-10-3 network architecture, it is found that the level of learning rate is very important to get the right and fast network architecture. This can be seen in experiments with a learning rate of 0.65 can produce a better level of accuracy compared to a learning rate smaller than 0.65.

Full Text:

PDF

References


W. Maharani, “Klasifikasi Data Menggunakan JST Backpropagation Momentum dengan Adaptive Learning Rate,” in Seminar Nasional Informatika 2009 (semnasIF 2009), 2009, vol. 2009, pp. 25–31.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Computer Engineering, Science and System Journal, vol. 4, no. 1, p. 78, 2019.

A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of

Origin,” Journal of Physics: Conf. Series, vol. 1255, pp. 1–6, 2019.

A. Arandika, “Implementasi Algoritma K-Nearest Neighbor (K-NN) Untuk Klasifikasi Data Wine,” 2014.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” Jurnal & Penelitian Teknik Informatika Sinkron, vol. 2, no. 2, pp. 37–44, 2017.

A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 43–54, 2017.

A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,” Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–7, 2017.

A. P. Windarto, M. R. Lubis, and Solikhun, “MODEL ARSITEKTUR NEURAL NETWORK DENGAN BACKPROPOGATION PADA PREDIKSI TOTAL LABA RUGI KOMPREHENSIF BANK UMUM KONVENSIONAL,” Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 5, no. 2, pp. 147–158, 2018.

S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 34–42, 2017.

J. R. Saragih, M. Billy, S. Saragih, and A. Wanto, “Analisis Algoritma Backpropagation Dalam Prediksi Nilai Ekspor (Juta USD),” Jurnal Pendidikan Teknologi dan Kejuruan, vol. 15, no. 2, pp. 254–264, 2018.

E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka di Indonesia,” Jurnal semanTIK, vol. 4, no. 1, pp. 49–56, 2018.

S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,” JOIN (Jurnal Online Informatika), vol. 3, no. 2, pp. 110–115, 2018.

R. E. Pranata, S. P. Sinaga, and A. Wanto, “Estimasi Wisatawan Mancanegara Yang Datang ke Sumatera Utara Menggunakan Jaringan Saraf,” Jurnal semanTIK, vol. 4, no. 1, pp. 97–102, 2018.

A. A. Fardhani, D. Insani, N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,” Jurnal Infomedia, vol. 3, no. 1, pp. 25–30, 2018.

J. Wahyuni, Y. W. Paranthy, and A. Wanto, “Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara,” Jurnal Infomedia, vol. 3, no. 1, pp. 18–24, 2018.

Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA ( Studi kasus : Prediksi Prestasi Siswa SMAN 4 Ambon ),” Jurnal Matematika Integratif, vol. 11, no. 2, pp. 149–160, 2015.

M. A. Razak and E. Riksakomara, “Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin,” JURNAL TEKNIK ITS, vol. 6, no. 1, pp. 142–148, 2017.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, pp. 1–6, 2019.

J. Han, Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems). 2011.




DOI: http://dx.doi.org/10.30645/j-sakti.v3i2.161

Refbacks

  • There are currently no refbacks.



J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:


Jumlah Kunjungan :

View My Stats